

REPORT OF GEOTECHNICAL INVESTIGATION

PROPOSED WAWA FOOD MARKET & FUEL STATION 108 EGG HARBOR ROAD BLACKWOOD (WASHINGTON TOWNSHIP) GLOUCESTER COUNTY, NEW JERSEY

Prepared for:

THE FERBER COMPANY, INC. 151 Sawgrass Corners Drive Suite 202 Ponte Vedra Beach, Florida 32082 Prepared by:

WHITESTONE ASSOCIATES, INC. 35 Technology Drive Warren, New Jersey 07059

Kyle J. Kopacz, P.E. Project Manager

Helles

Laurence W. Keller, P.E. Principal, Geotechnical Services

Whitestone Project No.: GS1815987.000 January 15, 2019 (Updated July 9, 2020)

CHALFONT, PA 215.712.2700

Southborough, MA 508.485.0755 Other Office Locations: ROCKY HILL, CT WALL, NJ 860.726.7889 732.592.2101

STERLING, VA 703.464.5858

EVERGREEN, CO 303.670.6905

30 INDEPENDENCE BOULEVARD SUITE 250 WARREN, NJ 07059 908.668.7777 whitestoneassoc.com

January 15, 2019 (Updated July 9, 2020)

via email

THE FERBER COMPANY, INC.

151 Sawgrass Corners Drive Suite 202 Ponte Vedra Beach, Florida 32082

Attention: Eric L. Steinfeldt, P.E., P.P.

Regarding: REPORT OF GEOTECHNICAL INVESTIGATION PROPOSED WAWA FOOD MARKET & FUEL STATION 108 EGG HARBOR ROAD BLACKWOOD (WASHINGTON TOWNSHIP) GLOUCESTER COUNTY, NEW JERSEY WHITESTONE PROJECT NO.: GS1815987.000

Dear Mr. Steinfeldt:

Whitestone Associates, Inc. (Whitestone) is pleased to submit the attached *Report of Geotechnical Investigation* for the above-referenced project. The attached report presents the results of Whitestone's soils exploration efforts and presents recommendations for design of the proposed structural foundations, floor slab, pavements, utilities, stormwater management facilities, and related earthwork associated with the proposed site redevelopment.

Whitestone's geotechnical division appreciates the opportunity to be of continued service to The Ferber Company, Inc. (Ferber). Please note that Whitestone has the capability to perform the additional geotechnical engineering services recommended herein. Please contact us at (908) 668-7777 with any questions regarding the enclosed report.

Sincerely,

WHITESTONE ASSOCIATES, INC.

Kyle J. Kopacz, P.E. Project Manager Hell

Laurence W. Keller, P.E. Principal, Geotechnical Services

KK/pwd L:\Job Folders\2018\1815987GS\Reports and Submittals\15987 ROGLdocx
Enclosures
Copy: Jeffrey Martell, PE, PP, CME, LEED AP, Stonefield Engineering & Design, LLC
Paul Mutch, P.E., Stonefield Engineering & Design, LLC
Janet Coulther, The Ferber Company, Inc.

Other Office Locations: NT, PA SOUTHBOROUGH, MA ROCKY HILL, CT WALL, NJ .2700 508.485.0755 860.726.7889 732.592.2101

STERLING, VA 703.464.5858

EVERGREEN, CO 303.670.6905

CHALFONT, PA 215.712.2700

REPORT OF GEOTECHNICAL INVESTIGATION Proposed Wawa Food Market & Fuel Station 108 Egg Harbor Road Blackwood (Washington Township), Gloucester County, New Jersey

TABLE OF CONTENTS

SECTION 1.0	SUMMARY OF FINDINGS AND RECOMMENDATIONS	1
SECTION 2.0	INTRODUCTION	3
2.1	AUTHORIZATION	3
2.2	PURPOSE	3
2.3	SCOPE	3
	2.3.1 Field Exploration	4
	2.3.2 Laboratory Testing Program	4
SECTION 3.0	SITE DESCRIPTION	6
3.1	LOCATION AND DESCRIPTION	6
3.2	EXISTING CONDITIONS	6
3.3	SITE BEDROCK GEOLOGY	6
3.4	PROPOSED CONSTRUCTION	7
SECTION 4.0	SUBSURFACE CONDITIONS	8
4.1	SUBSURFACE SOIL CONDITIONS	8
4.2	GROUNDWATER	8
SECTION 5.0	CONCLUSIONS AND RECOMMENDATIONS	9
5.1	GENERAL	9
5.2	SITE PREPARATION AND EARTHWORK	9
5.3	STRUCTURAL FILL AND BACKFILL	10
5.4	GROUNDWATER CONTROL	11
5.5	FOUNDATIONS	11
5.6	FLOOR SLAB	13
5.7	PAVEMENT DESIGN CRITERIA	13
5.8	RETAINING WALL/LATERIAL EARTH PRESSURES	14
5.9	SEISMIC AND LIQUEFACTION CONSIDERATIONS	15
5.10	EXCAVATIONS	15
5.11	SUPPLEMENTAL POST INVESTIGATION SERVICES	15
5.12	UST TIE DOWNS AND EMBEDMENT	16
SECTION 6.0	GENERAL COMMENTS	18

REPORT OF GEOTECHNICAL INVESTIGATION Proposed Wawa Food Market & Fuel Station 108 Egg Harbor Road Blackwood (Washington Township), Gloucester County, New Jersey

TABLE OF CONTENTS (Continued)

FIGURES

FIGURE 1 Test Location Plan

APPENDICES

APPENDIX A Records of Subsurface Exploration

APPENDIX B Laboratory Test Results

APPENDIX C Supplemental Information (USCS, Terms & Symbols)

WHITESTONE ASSOCIATES, INC.

SECTION 1.0 Summary of Findings and Recommendations

An exploration and evaluation of the subsurface conditions has been performed on the site of the proposed Wawa Food Market and fuel station development located at 108 Egg Harbor Road in Blackwood, Washington Township, Gloucester County, New Jersey. The site of the proposed construction is shown on the *Test Location Plan* included as Figure 1.

Based on the September 18, 2018 *Concept Y* prepared by Stonefield Engineering & Design (Stonefield), the proposed site redevelopment includes clearing of the existing site and construction of a Wawa Food Market and fuel station with associated new pavements, stormwater management (SWM) facilities, underground storage tanks (USTs) and utilities. No earth retaining walls were identified on the site plan. The final types, locations, and elevations of the SWM facilities were not determined at the time of this report.

A topographic survey of the site was not available at the time of this report. However, based on visual observation, there are significant grade changes across the subject site on the order of 10 feet to 15 feet. Furthermore, based on conversations with Stonefield cuts up to about 10 feet will be required to achieve design grades.

The geotechnical investigation included performing a reconnaissance of the project site, drilling soil borings, excavating profile pits, performing *in-situ* infiltration tests, and collecting soil samples for laboratory analysis. The data from this exploration and analysis were analyzed by Whitestone in light of the project information provided by Stonefield and The Ferber Company (Ferber).

A summary of Whitestone's findings is presented in the following table and detailed descriptions of the subsurface conditions encountered are presented in Section 4.0.

Subsurface Profile	Description	Bottom of Stratum (fbgs)
Existing Fill Materials	Encountered in majority of the test locations. Consisting of silty sand with variable amounts of mulch.	1.0 to 3.0
Coastal Plains Deposits	Generally consisting of poorly graded sand (USCS: SP and SP-SM) with lessor amounts of silt and clayey sand (USCS: SC). The coastal plains deposits extended to the maximum termination depth of approximately 25 fbgs.	+25.0
Groundwater	Static groundwater was encountered at a depth of approximately 23.0 fbgs.	23.0

fbgs: feet below ground surface.

WHITESTONE ASSOCIATES, INC.

Recommendations developed upon consideration of these findings are summarized in the table below and presented in greater detail in the indicated sections of the report.

Geotechnical Consideration	Recommendation	Report Section
Foundation System	Shallow spread and continuous footings bearing on natural soils and/or imported structural fill. Isolated areas requiring overexcavation and replacement of existing fill materials are anticipated.	5.5
Groundwater Control	Static groundwater is not anticipated to be encountered during construction. However, removal of perched/trapped water is anticipated within excavations for foundations and utilities.	5.4
Floor Slab & Pavements	The site soils are suitable for a ground-supported floor slab and pavements following compaction efforts and proofroll inspections. Isolated areas requiring overexcavation should be anticipated.	5.6
On-Site Soil Reuse	Limited portions of the existing fill materials and a majority of the natural site sand soils are suitable for reuse as structural fill and/or backfill provided and that moisture levels are maintained within three percent of optimum moisture content and deleterious debris is removed.	5.3
SWM Facilities	The natural granular soils are favorable for infiltration. Discontinuous layers or pockets of impermeable clay/silt soils will need to be overexcavated and replaced with granular soils.	5.13

SECTION 2.0 Introduction

2.1 AUTHORIZATION

Eric L. Steinfeldt, P.E., P.P. of Ferber issued authorization to Whitestone to perform a geotechnical investigation on this site relevant to the construction of the proposed development. The geotechnical investigation was performed in accordance with Whitestone's September 11, 2018 proposal to Ferber.

2.2 PURPOSE

The purpose of this subsurface exploration and analysis was to:

- ► ascertain the various soil profile components at test locations;
- estimate the engineering characteristics of the proposed foundation bearing and subgrade materials;
- provide geotechnical criteria for use by the design engineers in preparing the foundation, slab, SWM facilities, and pavement design;
- ▶ provide recommendations for required earthwork and subgrade preparation;
- record groundwater levels (if encountered) at the time of the investigation and discuss the potential impact on the proposed construction; and
- ▶ recommend additional investigation and/or analysis (if warranted).

2.3 SCOPE

The scope of the exploration and analysis included the subsurface exploration, field testing and sampling, laboratory analysis, an engineering analysis and evaluation of the foundation materials. This *Report of Geotechnical Investigation* is limited to addressing the site conditions related to the physical support of the proposed construction. Any references to suspicious odors, materials, or conditions are provided strictly for the client's information.

Whitestone's environmental division conducted a *Phase I Environmental Site Assessment* for the subject site, the results of which are reported under separate cover.

WHITESTONE ASSOCIATES, INC.

2.3.1 Field Exploration

Field exploration of the project site was conducted by means of eight soil borings, identified as B-1 through B-8. Additionally, six soil profile pits, identified as SPP-1 through SPP-6, and five supplemental soil profile pits, identified as SSPP-1 through SSPP-5, were performed in proposed SWM areas. The soil borings were advanced with an ATV-mounted Mobile Drill rig equipped with hollow-stem augers and the profile pits were excavated with a Deere 310 track-mounted backhoe. The test locations are shown on the *Test Location Plan* included as Figure 1. *Records of Subsurface Exploration* are provided in Appendix A. The test locations and termination depths are summarized in the following table:

BORING LOCATION/TERMINATION DEPTH SUMMARY TABLE									
Proposed Construction Test No. Termination Depth (fbgs									
Wawa Building	B-4 & B-7	20.0							
Fuel Island Canopy	B-1, B-6 & B-8	20.0 to 25.0							
UST Field	B-8	25.0							
Pavements	B-2 & B-5	10.0 to 20.0							
Trash Enclosure	B-3	20.0							

fbgs: feet below ground surface

The soil borings and profile pits were conducted in the presence of a Whitestone engineer who performed field tests, recorded visual classifications, and collected samples of the various strata encountered. The test areas were located in the field using normal taping procedures and estimated right angles. These locations are presumed to be accurate within a few feet.

Soil borings and Standard Penetration Tests (SPTs) were conducted in general accordance with ASTM International (ASTM) designation D 1586. The SPT resistance value (N) can be used as an indicator of the consistency of fine-grained soils and the relative density of coarse-grained soils. The N-value for various soil types can be correlated with the engineering behavior of earthworks and foundations.

Groundwater level observations, where encountered, were recorded during and immediately after the completion of field operations prior to backfilling the borings. Groundwater elevations derived from sources other than seasonally observed groundwater monitor wells may not be representative of true groundwater levels.

2.3.2 Laboratory Testing Program

In addition to the field investigation, a laboratory testing program was conducted to determine additional, pertinent engineering characteristics of representative samples of on-site soils. The laboratory testing program was performed in general accordance with applicable ASTM standard test methods and included physical testing of proposed building foundation bearing and pavement subgrade stratum.

WHITESTONE ASSOCIATES, INC.

Physical/Textural Analyses: Representative samples of selected strata encountered were subjected to a laboratory testing program that included Atterberg limits determinations (ASTM D-4318), moisture content determinations (ASTM D-2216) and washed gradation analyses (ASTM D-422) in order to perform supplementary engineering soil classifications in general accordance with ASTM D-2487. The soil strata tested were classified by the Unified Soil Classification System (USCS) and results of the laboratory testing are summarized in the following table. Quantitative test results are provided in Appendix B.

PHYSICAL/TEXTURAL ANALYSES SUMMARY									
Boring No.	Sample	Depth (fbgs)	% Passing No. 200 Sieve	Moisture Content (%)	Liquid Limit	Plastic Index	USCS Classification		
B-2	S-5	8.0 to 10.0	30.9	16.4	43	18	SC		
B-4	S-6	13.0 to 15.0	5.2	6.1	Non-Plastic		SP-SM		
B-7	S-3	4.0 to 6.0	6.4	6.2	Non-l	SP-SM			

fbgs: feet below ground surface

The engineering classifications are useful when considered in conjunction with the additional site data to estimate properties of the soil types encountered and to predict the soil's behavior under construction and service loads.

Pavement and Slab Subgrade Analyses: A representative bulk sample from the anticipated proposed pavement subgrade stratum was collected and tested to determine the soil's suitability for support of proposed pavement and slabs. A California Bearing Ratio (CBR) test was performed on a representative sample taken at the anticipated subgrade soil levels in general accordance with ASTM D 1883. The CBR value is used in conjunction with climatic factors and design loads to design an appropriate pavement section. A laboratory CBR value of 19.4 percent was obtained from the selected site sample tested, which had a unified soil classification system designation of SM with 17.2 percent fines.

A moisture-density relationship per ASTM D 1557 also was performed. The maximum dry density and optimum moisture content was obtained from the peak value of the moisture-density curve. The maximum dry density and optimum moisture content on the tested sample was 127.6 pounds per cubic foot (pcf) at 9.2 percent, respectively. More detailed quantitative results are provided in Appendix B.

SECTION 3.0 Site Description

3.1 LOCATION AND DESCRIPTION

The subject site is located at 108 Egg Harbor Road in Blackwood, Washington Township, Gloucester County, New Jersey. The site is bound to the north by an earthwork facility, to the south by Egg Harbor road followed by commercial buildings, to the east by a wooded parcel, and to the west by a commercial building. The location of the site is shown on the *Test Location Plan* included as Figure 1.

3.2 EXISTING CONDITIONS

Surface Cover/Development: At the time of the investigation, the subject site consisted of a vacant parcel and a landscaped parcel separated by an exit off of Egg Harbor Road with associated pavements and utilities.

Topography: A topographic survey of the site was not available at the time of this report. However, based on visual observation, there are significant grade changes across the subject site on the order of 10 feet to 15 feet. Futhermore, based on conversations with Stonefield, cuts up to about 10 feet will be required to achieve design grades.

Utilities: The existing site structures were serviced by natural gas, sanitary sewer, water, stormwater, electric, and telecommunications. The utility information contained in this report is presented for general discussion only and is not intended for construction purposes.

Site Drainage: Surface runoff generally consists of flow across the existing pavement towards inlets located within adjacent right-of-ways. The termini of these inlets are unknown.

3.3 SITE BEDROCK GEOLOGY

The subject site is situated within the Atlantic Coastal Plain Physiographic Province of New Jersey. Specifically, the site is underlain by the Tertiary Aged, Lower member of the Kirkwood Formation. Specifically, the Lower member of the Kirkwood Formation consists of light yellow to white, massive to thick bedded, fine to medium grained sands interbedded with clay. Locally, areas encountered in near-surface beds are very micaceous and extensively stained by iron oxides. The thick bedded strata commonly consists of interbedded fine grained, micaceous sand and gravelly, coarse to fine grained sand. Overburden materials also include manmade fill associated with ongoing site activities.

3.4 PROPOSED CONSTRUCTION

Based on the aforementioned *Concept Y* prepared by Stonefield, the proposed site redevelopment includes clearing of the existing site and construction of a Wawa Food Market and fuel station with associated new pavements, SWM facilities, USTs and utilities. A proposed final grading plan was not available at the time of this report. Based on existing site grades and surrounding development, Whitestone anticipates that proposed grading will result in cuts and fills on the order of 10 feet. No earth retaining walls were identified on the site plan. The final types, locations, and elevations of the SWM facilities were not determined at the time of this report.

Whitestone anticipates that the proposed structures will consist of a combination of wood and steel framing with ground-supported concrete slabs with no subsurface levels. Based on past experience with similar projects, maximum design loads are anticipated to be less than the following:

- building column load 65 kips;
- ▶ wall load 2.0 kips per linear foot;
- ▶ floor slab load 125 pounds per square foot; and
- ► canopy overturning moment 50 kip-foot.

The scope of Whitestone's investigation and the professional advice contained in this report were generated based on the project details and loading noted herein. Any revisions or additions to the design details enumerated in this report should be brought to the attention of Whitestone for additional evaluation as warranted.

SECTION 4.0 Subsurface Conditions

Details of the subsurface materials encountered are presented on the *Records of Subsurface Exploration* presented in Appendix A of this report. The subsurface soil conditions encountered in the soil borings and test pits consisted of the following generalized strata in order of increasing depth.

4.1 SUBSURFACE SOIL CONDITIONS

Existing Fill Materials: At the surface, the soil borings encountered existing fill materials consisting of silty sand with variable amounts of mulch. The existing fill soils were encountered to depths ranging from one fbgs to three fbgs. SPT N-values within this stratum ranged from nine blows per foot (bpf) to 30 bpf and averaged approximately 18 bpf.

Coastal Plains Deposits: Underlying the existing fill materials, the subsurface test disclosed coastal plains deposits that generally consisted of poorly graded sand (USCS: SP and SP-SM) with variable amounts of silty and thin seams of clayey sand (USCS: SC) encountered across the site. SPT N-values recorded within the granular portions of this stratum ranged between four bpf and 24 bpf, indicating loose to medium dense relative densities and averaged approximately 14 bpf.

4.2 GROUNDWATER

Static groundwater was encountered in the deeper borings performed at a depth of approximately 23 fbgs. Furthermore, perched/trapped water was encountered at variable depths within the existing fill materials and natural soils. Static and perched/trapped water conditions are expected to fluctuate seasonally and following periods of precipitation.

SECTION 5.0 Conclusions and Recommendations

5.1 GENERAL

The results of the subsurface investigation and analysis indicated that, following overexcavation of the existing fill materials encountered across the subject site, the proposed structures may be supported by a shallow foundation system designed to bear within the natural site soils and/or properly placed structural fill materials. Furthermore, a majority of the existing soils are suitable for supporting shallow floor slabs and pavements contingent upon construction phase evaluation. Some isolated areas of debris-laden fill materials requiring overexcavation and replacement with suitable on-site materials or imported structural are anticipated.

5.2 SITE PREPARATION AND EARTHWORK

Surface Cover Stripping and Demolition: Prior to stripping operations, all utilities should be identified and secured. Any surficial vegetation and pavement should be stripped at least 10 feet beyond the limits of the proposed construction area. Any remnant structures encountered including foundation walls, footings, slabs, and utilities, should be removed entirely from below proposed foundations and slabs including their zones of influence (as determined by the Geotechnical Engineer) and excavated to at least two feet below proposed construction subgrade levels elsewhere.

Surface Preparation/Proofrolling: Prior to placing any fill, backfill or subbase materials to raise or restore grades to the desired subgrade elevations, the exposed soils should be compacted to a firm and unyielding surface with a minimum of four passes in two perpendicular directions of a minimum 10-ton, vibratory smooth drum roller. The surface should be proofrolled with a loaded tandem axle truck in the presence of the geotechnical engineer to help identify soft or loose pockets that may require removal and replacement or further investigation. Any fill or backfill should be placed and compacted in accordance with Section 5.3.

Weather Performance Criteria: The existing fill materials and glacial site soils will soften when exposed to water; every effort must be made to maintain drainage of surface water runoff away from construction areas by grading and limiting the exposure of excavations and prepared subgrades to rainfall. Accordingly, excavation and fill placement procedures should be performed during favorable weather conditions. Overexcavation of saturated soils and replacement with controlled structural fill per Section 5.3 of this report may be required prior to resuming work on disturbed subgrade soils.

On-Site Soil Protection and Maintenance: The site soils (existing fill and natural) will degrade when exposed to inclement weather, freeze-thaw cycles, or repeated construction traffic. However, if properly protected and maintained as recommended herein, the site soils will provide adequate support for the proposed construction. The site contractors should employ appropriate means and methods to protect the subgrade including, but not limited to the following:

- leaving existing asphalt pavement in-place as long as practical to help minimize subgrade exposure to inclement weather;
- ► sealing exposed subgrade soils on a daily basis with a vibratory smooth drum roller;
- regrading the site as needed to maintain positive drainage away from open earthwork construction areas and to prevent standing water;
- ► removing wet surficial soils immediately; and
- limiting exposure to construction traffic and precipitation especially following inclement weather and subgrade thawing.

Pavement Subgrade Stabilization and Inspection: Pavement subgrade soils which are exposed to inclement weather and heavy construction traffic will degrade and require either extensive drying time or overexcavation and replacement in order to provide a suitable subgrade for pavements. Overexcavation of unstable soils (existing fill materials or natural soils) within pavement areas typically should be limited to approximately 1.5 feet below planned subgrade unless directed otherwise by the owner's geotechnical engineer, provided that a reinforcing geogrid approved by the owner's geotechnical engineer is used. Alternatively, unstable materials may be completely overexcavated and either aerated and recompacted or replaced with imported structural fill per Section 5.3. However, this option is likely least economical.

Geogrids typically are economical when proposed undercut depths exceed approximately 18 inches. The geogrid (Tensar TriAx TX130S, or similar) should be placed directly on the exposed subgrade and backfill should consist of a well-graded gravel and sand blend. The services of the geotechnical engineer should be retained to inspect soil conditions during construction and to provide specific recommendations for stabilizing subgrades. Additionally, a geotechnical engineer should be retained to verify the suitability of prepared foundation, floor slab and pavement subgrades for support of design loads.

5.3 STRUCTURAL FILL AND BACKFILL

Imported Fill Material: Any imported material placed as structural fill or backfill to raise elevations or restore design grades should consist of clean, relatively well-graded sand or gravel with a maximum particle size of two inches and five percent to 15 percent of material finer than a #200 sieve. Silts, clays, and silty or clayey sands and gravels with higher percentage of fines and with a liquid limit less than 40 and a plasticity index less than 20 may be considered subject to the owner's approval, provided that the

required moisture content and compaction controls are met during favorable weather conditions. The material should be free of clay lumps, organics, and deleterious material. Imported structural fill material should be approved by a qualified geotechnical engineer prior to delivery to the site.

On-Site Materials: Whitestone anticipates that a limited portions of the existing fill materials and the majority of the natural soil will be suitable for reuse as structural fill/backfill material provided that soil moisture contents are controlled within three percent of optimum moisture level and organic debris is segregated. Immediate re-use of the finer grained site soils (USCS: SC) should not be expected. Additionally, the site soils must be properly evaluated during the construction phase as described in Section 5.11.

Compaction and Placement Requirements: On-site soils used as fill or backfill should be placed in maximum nine-inch loose lifts and compacted using a 10-ton smooth drum vibratory drum roller during mass grading activities or a small walk-behind roller or hand-held vibratory compactor within excavations. All structural fill and backfill, including 10 feet outside exterior walls, should be compacted to at least 95 percent of the maximum dry density within three percent of the optimum moisture content as determined by ASTM D 1557 (Modified Proctor). Structural fill and backfill placed within non-building pad areas may be compacted to at least 92 percent of the maximum dry density within three percent of optimum moisture content as determined by ASTM D 1557 (Modified Proctor).

Structural Fill Testing: A sample of the imported fill material or any on-site material proposed for reuse as structural fill or backfill should be submitted to the geotechnical engineer for analysis and approval at least one week prior to its use. The placement of all fill and backfill should be monitored by a qualified engineering technician to ensure that the specified material and lift thicknesses are properly installed. A sufficient number of in-place density tests should be performed to ensure that the specified compaction is achieved throughout the height of the fill or backfill.

5.4 GROUNDWATER CONTROL

Static groundwater was encountered at a depth of approximately 23 fbgs. As such, Whitestone anticipates that groundwater will not be encountered during construction activities. However, temporary dewatering including the use of mechanical pumps to remove trapped/perched water within footing and utility excavations, especially following precipitation events, should be anticipated.

5.5 FOUNDATIONS

Shallow Foundation Design Criteria: Following overexcavation of existing fill materials encountered at or below proposed foundation elevations, Whitestone recommends supporting the proposed Wawa building, canopy, and trash enclosure on conventional shallow spread and continuous footings designed to bear within the natural soils and/or structural fill materials, provided these materials are properly

WHITESTONE ASSOCIATES, INC.

evaluated, placed and compacted in accordance with Sections 5.2, 5.3, and 5.11 of this report. Foundations bearing within these materials may be designed using a maximum allowable net bearing pressure of 3,000 pounds per square foot.

All footing bottoms should be improved by in-trench compaction in the presence of the geotechnical engineer. Regardless of loading conditions, proposed foundations should be sized no less than minimum dimensions of 24 inches for continuous wall footings and 36 inches for isolated column footings.

Footings should be designed so that the maximum toe pressure due to the combined effect of vertical loads and overturning moment does not exceed the recommended maximum allowable net bearing pressure. In addition, positive contact pressure should be maintained throughout the base of the footings such that no uplift or tension exists between the base of the footings and the supporting soil. Uplift loads should be resisted by the weight of the concrete. Side friction should be neglected when proportioning the footings so that lateral resistance should be provided by friction resistance at the base of the footings. An allowable coefficient of friction against sliding of 0.35 is recommended for use in the design of concrete foundations bearing within the on-site soils or imported structural backfill.

Inspection Criteria: Whitestone recommends that the suitability of the bearing soils along the footing bottoms be verified by a geotechnical engineer prior to placing concrete for the footings. Special attention should be given to areas underlain by existing fill materials or soft materials. In the event that isolated areas of unsuitable materials are encountered in footing excavations, overexcavation and replacement of the materials or deeper foundation embedment may be necessary to provide a suitable footing subgrade. Any overexcavation to be restored with structural fill will need to extend at least one foot laterally beyond footing edges for each vertical foot of overexcavation. Lateral overexcavation may be eliminated if grade is restored with lean concrete. The bottoms of overexcavated areas should be compacted with vibratory smooth drum rollers, walk-behind compactors, vibrating plates or plate tampers ("jumping jacks") to compact locally disturbed materials and densify any underlying loose zones. Any standing water within the footing excavation should be removed with a mechanical pump prior to concrete placement.

Settlement: Whitestone estimates post construction settlements of new foundations will be on the order of less than one inch if the recommendations outlined in this report are properly implemented. Differential settlement between individual footings should be less than one-half inch.

Frost Coverage: Footings subject to frost action should be placed at least 30 inches below adjacent exterior grades or the depth required by local building codes to provide protection from frost penetration. Interior footings not subject to frost action may be placed at a minimum depth of 18 inches below the slab subgrade.

5.6 FLOOR SLAB

Whitestone anticipates that majority of the site soils will provide suitable support for the floor slab, contingent upon construction phase evaluation. Areas of overexcavation should be anticipated due to the inherent variability of the existing fill materials. The exposed subgrade should be compacted and inspected via proofrolling in accordance with Sections 5.2, 5.3 and of this report. Any areas that become softened or disturbed as a result of wetting and/or repeated exposure to construction traffic should be removed and replaced with compacted structural fill. The properly prepared site soils and structural fill/backfill materials are expected to yield a minimum subgrade modulus (k) of 150 psi/in.

A minimum four inch layer of three-quarter inch crushed stone (AASHTO No. 57 stone or similar) should be installed below the floor slab to provide a uniform subgrade and capillary break. A moisture vapor barrier should be placed beneath the floor slab where recommended by the flooring manufacturer.

5.7 PAVEMENT DESIGN CRITERIA

General: The majority of the site soils and/or compacted structural fill/backfill placed to raise or restore design elevations will be suitable for support of the proposed pavements provided these materials are properly evaluated, compacted, and proofrolled in accordance with Sections 5.2, 5.3, and 5.11 of this report during favorable weather conditions. Subgrade stabilization with a triaxial geogrid, approved by the owner's geotechnical engineer, may be used to minimize depths of overexcavation (if necessary) as discussed further in Section 5.3.

Design Criteria: A CBR value of 13 has been assigned to the properly prepared subgrade soils for pavement design purposes. This value was correlated with pertinent soil support values and assumed traffic loads to prepare flexible and rigid pavement designs per the AASHTO *Guide for the Design of Pavement Structures*.

Design traffic loads were assumed based on typical volumes for similar facilities and correlated with 18kip equivalent single axle loads (ESAL) for a 20 year life. An estimated maximum load of 35,000 ESAL was used for all pavement areas assuming the pavement primarily will accommodate both automobile and limited heavier truck traffic.

Pavement Section: The recommended flexible pavement section is presented below in tabular format:

FLEXIBLE PAVEMENT SECTION DESIGN							
Layer	Material	Standard Duty Thickness (Inches)					
Asphalt Surface	NJDOT I-5 Surface	1.5					

WHITESTONE ASSOCIATES, INC.

FLEXIBLE PAVEMENT SECTION DESIGN (cont'd)								
Layer	Layer Material							
Asphalt Base	NJDOT I-2 Base	2.5						
Granular Subbase	NJDOT DGA Base Course	6.0						

A rigid concrete pavement should be used to provide suitable support at areas of high traffic or severe turns (such as loading areas, driveway aprons, and garbage dumpster aprons). The recommended rigid pavement is presented below in tabular format:

RIGID PAVEMENT SECTION DESIGN								
Layer	Material	Standard Duty Thickness (Inches)						
Surface	4000 psi air-entrained concrete	6.0						
Base	NJDOT Dense-Graded Aggregate	6.0						

Additional Design Considerations: The pavement section thickness designs presented in this report are based on the design parameters detailed herein and are contingent on proper construction, inspection, and maintenance. Additional pavement thickness may be required by local code. The designs are contingent on achieving the minimum soil support value in the field. To accomplish this requirement, all subgrade soil and supporting fill or backfill must be properly evaluated, placed, and prepared as detailed in Sections 5.2, 5.3, and 5.11 of this report. Proper drainage must be provided for the pavement structure including appropriate grading and surface water control, as well as measures to drain water from the subgrade.

The performance of the pavement also will depend on the quality of materials and workmanship. Whitestone recommends that NJDOT standards for materials, workmanship, and maintenance be applied to this site. Project specifications should include verifying that the installed asphaltic concrete material composition is within tolerance for the specified materials and that the percentage of air voids of the installed pavement is within specified ranges for the respective materials. All rigid concrete pavements should be suitably air-entrained, jointed, and reinforced.

5.8 RETAINING WALL/LATERIAL EARTH PRESSURES

General: No retaining walls currently are planned for the site redevelopment. However, Whitestone anticipates that temporary shoring structures will be required during installation of the proposed USTs.

Lateral Earth Pressures/Recommendations: Below-grade walls must be capable of withstanding active and at-rest earth pressures. Walls free to rotate generally can be designed to resist active earth pressures. Wall corners and restrained walls need to be designed to resist at-rest earth pressures. The following parameters may be used for design of below-grade walls or other structures.

WHITESTONE ASSOCIATES, INC.

LATERAL EARTH PRESSURE PARAMETER SUMMARY									
Parameter	On-Site Soils	Imported Granular Backfill							
Moist Density (γ_{moist})	140 pcf	140 pcf							
Internal Friction Angle (φ)	28°	30°							
Active Earth Pressure Coefficient (Ka)	0.36	0.33							
Passive Earth Pressure Coefficient (K _p)	2.77	3.00							
At-Rest Earth Pressure Coefficient (K _o)	0.53	0.50							

Lateral earth pressure will depend on the backfill slope angle and the wall batter angle. A sloped backfill will add surcharge load and affect the angle of the resultant force. The effect of other surcharges will also need to be included in earth pressure calculations, including the loads imposed by adjacent structures and traffic. The effects of proposed sloped backfill surface grades, and proposed slopes beyond the toe of the retaining structure, if applicable, must be considered when calculating resultant forces to be resisted by the retaining structure.

5.9 SEISMIC AND LIQUEFACTION CONSIDERATIONS

The subsurface conditions are most consistent with a Site Class D as defined by the *International Building Code* (IBC) – *New Jersey Edition*. Based on the seismic zone and soil profile, liquefaction considerations are not expected to have a substantial impact on design. Based on the seismic zone and soil profile, liquefaction considerations are considered unlikely and not expected to have a substantial impact on design.

5.10 EXCAVATIONS

The existing fill materials and natural soils encountered during this investigation typically are, at a minimum, consistent with Type C Soil Conditions as defined by 29 CFR Part 1926 (OSHA) which require a maximum unbraced excavation angle of 1.5:1 (horizontal:vertical). Actual conditions encountered during construction should be evaluated by a competent person (as defined by OSHA) to ensure that safe excavation methods and/or shoring and bracing requirements are implemented.

5.11 SUPPLEMENTAL POST INVESTIGATION SERVICES

Supplemental Evaluation of Existing Fill Materials: The conditions disclosed by the investigation indicate that limited portions of the existing fill materials encountered will be suitable for reuse as structural backfill/fill and for supporting proposed slab and pavement construction if evaluated and prepared as described herein. However, there is a potential risk of variability in existing fill materials, which may not be disclosed by soils borings performed throughout the site. As such, Whitestone

recommends confirming further the condition of the existing fill by means of supplemental test pit excavations or subgrade proofroll in the early stages of construction to enable an assessment for the depths, areal extent, presence of voids, uncontrolled conditions, or deleterious materials. If unsuitable conditions are encountered, alternative recommendations, such as additional overexcavation and replacement, or subgrade stabilization methods may be required.

Demolition and Construction Inspection and Monitoring: The owner's geotechnical engineer should perform inspection, testing, and consultation during construction as described in previous sections of this report. Monitoring and testing should also be performed to verify that the existing structures are properly demolished, any encountered underground structures, such as the existing building foundations, are properly backfilled, the existing surface cover materials are properly removed, and suitable materials are used for controlled fill and that they are properly placed and compacted over suitable subgrade soils. Any overexcavation of existing fill materials encountered within the proposed building footprint that are unsuitable for foundation and floor slab support should be witnessed and documented by the owner's geotechnical engineer. The proper placement of structural backfill within the building should also be documented by the owner's geotechnical engineer.

5.12 UST TIE DOWNS AND EMBEDMENT

Based on the groundwater levels encountered during this investigation, Whitestone anticipates that static groundwater will not be encountered within the UST excavation. However, perched groundwater conditions may be encountered within the proposed UST excavations. As such, the USTs are anticipated to be located at least partially in groundwater during their design life. All USTs should be tied down and/or embedded at least 36 inches below a properly designed concrete mat to provide protection from frost penetration and to counteract potential buoyancy. The maximum anticipated buoyancy force may be calculated considering empty USTs that are completely submerged below the groundwater table. Optional tie down methods include the following:

- **Deadmen:** Concrete deadmen may be designed such that the weight of the concrete compensates buoyancy forces.
- **Mat Foundation:** A mat foundation may be designed such that the weight of the mat compensates buoyancy forces.

5.13 SWM AREA EVALUATION

Whitestone's field investigation within the proposed SWM areas consisted of excavating 11 soil profile pits (identified as SPP-1 through SPP-6 and SSPP-1 through SSPP-5), examining soil profiles, and performing six in-situ infiltration tests. The soils encountered were classified based on the United States Department of Agriculture (USDA) classification system. Soil profile pit locations are depicted on the attached *Test Location Plan* included as Figure 1.

WHITESTONE ASSOCIATES, INC.

Groundwater/Seasonal High Groundwater Levels: Static groundwater or indications of seasonal high groundwater were not encountered within the soil profile pits performed to depths of approximately 12 fbgs. The method used in determining the estimated seasonal high groundwater (SHGW) level included evaluating the soil morphology within a test excavation and identifying consistent irregular spots or blotches of different colors or minerals unlike that of the surrounding soil (mottles). *Records of Subsurface Exploration* showing the estimated seasonal high groundwater elevations observed are attached in Appendix A.

In-situ field tests were performed within each soil profile pit excavated at depths provided below. The results of the field infiltration testing are summarized in tabular format below:

SOIL PROFILE PIT SUMMARY									
Soil Profile Pit Number	ESHGW (fbgs)	USDA Classification	Test Depth (fbgs)	Infiltration Rate (inch/hour)					
SPP-1	NE	Sand	6.0	>20.0					
SPP-2	NE	Sand	4.0	>20.0					
SPP-3	NE	Sand	6.0	>20.0					
SPP-4	NE	Sand	4.0	>20.0					
SPP-5	NE	Sand	3.0	>20.0					
SPP-6	NE	Sand	4.0	>20.0					
SSPP-1	NE	Sand	4.0	>20.0					
SSPP-2	NE	Sand	4.0	>20.0					
SSPP-3	NE	Sand	4.0	>20.0					
SSPP-4	NE	Sand	4.0	>20.0					
SSPP-5	NE	Sand	4.0	>20.0					

SECTION 6.0 General Comments

Supplemental recommendations may be required upon finalization of construction plans or if significant changes are made in the characteristics or location of the proposed structure. Soil bearing conditions should be checked at the appropriate time for consistency with those conditions encountered during Whitestone's geotechnical investigation.

The recommendations presented herein should be utilized by a qualified engineer in preparing the project plans and specifications. The engineer should consider these recommendations as minimum physical standards which may be superseded by local and regional building codes and structural considerations. These recommendations are prepared for the sole use of The Ferber Company, Inc. for the specific project detailed and should not be used by any third party. These recommendations are relevant to the design phase and should not be substituted for construction specifications.

The possibility exists that conditions between borings may differ from those at specific testing locations, and conditions may not be as anticipated by the designers or contractors. In addition, the construction process may alter soil and rock conditions. Therefore, experienced geotechnical personnel should observe and document the construction procedures used and the conditions encountered.

Whitestone assumes that a qualified contractor will be employed to perform the construction work, and that the contractor will be required to exercise care to ensure all excavations are performed in accordance with applicable regulations and good practice. Particular attention should be paid to avoiding damaging or undermining adjacent properties and maintaining slope stability.

Whitestone recommends that the services of the geotechnical engineer be engaged to test and evaluate the soils in the footing excavations prior to concreting in order to determine that the soils will support the bearing capacities. Monitoring and testing also should be performed to verify that suitable materials are used for controlled fills and that they are properly placed and compacted over suitable subgrade soils.

The exploration and analysis of the foundation conditions reported herein are considered sufficient in detail and scope to form a reasonable basis for the foundation design. The recommendations submitted for the proposed construction are based on the available soil information and the design details furnished by The Ferber Company, Inc. and Stonefield Engineering & Design. Deviations from the noted subsurface conditions encountered during construction should be brought to the attention of the geotechnical engineer.

The geotechnical engineer warrants that the findings, recommendations, specifications, or professional advice contained herein have been promulgated after being prepared in accordance with generally accepted professional engineering practice in the fields of foundation engineering, soil mechanics, and engineering geology. No other warranties are implied or expressed.

WHITESTONE ASSOCIATES, INC.

FIGURE 1 Test Location Plan

	WHITESTONE	ASSOCIATES, INC.	Environmental & Geotechnical Engineers & Consultants 30 INDEPENDENCE BOULEVARD, SUITE 250, WARREN, NJ 07059 908.668.7777 WHITESTONEASSOC.COM
LEGEND SUPPLEMENTAL SOIL PROFILE PIT LOCATION (APPROX.) SOIL PROFILE PIT LOCATION (APPROX.) PREVIOUSLY PERFORMED BY WAI BORING LOCATION (APPROX.) SUBJECT PROPERTY BOUNDARY (APPROX.) SUBJECT PROPERTY BOUNDARY (APPROX.) CETOPLE 14, 2004 CONCEPTE 14, 2014 AV BLAN	DESCRIPTION PLAN DESCRIPTION PLAN DESCRIPTION DESCRIPRIPION DESCRI	CLIENT: CLIENT: THE FERBER COMPANY, INC.	PROJECT: PROPOSED BLACKWOOD BARNSBORO ROAD REALIGNMENT 108 EGG HARBOR ROAD BLACKWOOD (WASHINGTON TOWNSHIP), GLOUSTER COUNTY, NI BLACKWOOD (WASHINGTON TOWNSHIP), GLOUSTER COUNTY, NI

APPENDIX A Records of Subsurface Exploration

Boring No.: B-1

Page 1 of 1

Project: Proposed Blackwood Barnsboro Road Realignment WAI Project No.: GJ1815988.000													
Location:		108 E	gg Harbor Road; Bl	ackwo	ood (Wa	shington	Township); Glo	oucester	County, NJ	-	Client:	The Ferber Comp	pany, Inc.
Surface El	evatio	n:	± <u>NS</u> fee	t			Date Started:		11/26/2018	Wate	er Depth Elevation	Cave-In	Depth Elevation
Terminatio	on Dep	th:	20.0 fee	t bgs			Date Complet	ed:	11/26/2018	(f	eet bgs) (feet)	(fe	et bgs) (feet)
Proposed	Locat	on:	Canopy				Logged By:	мн		During:	NE 🛛 🝸		
Drill / Test	Methe	od:	HSA / SPT				Contractor:	ETD		At Completion:	I V	At Completion:	14.0 📓
							Equipment:	Geopr	obe 7822DT	24 Hours:		24 Hours:	🖂
	SA	MPL			1	DEPT	H STRAT	A		DESCRIPTIC	N OF MATERIALS		REMARKS
(feet)	No	Туре	Blows Per 6"	Rec. (in.)	N	(feet)				(Clas	ssification)		
						0.0							
		\setminus /				1 –	FILL	\otimes	Brown to Light Bro	own Silty Sand, Mois	t (FILL)		Trace Brick
0 - 2	S-1	Y	11 - 16 - 14 - 12	16	30	1.0		\times					Trace Mulch
		Λ							Brown to Light Bro	own Poorly Graded S	Sand, Moist, Dense (SP)		
		(\rightarrow)				- 1	DEPOSITS						
		\backslash /						::::					
2 - 4	S-2	X	7 - 6 - 6 - 6	20	12				As Above, Mediun	n Dense (SP)			Trace Gravel
		\backslash					_						
		\mapsto					_						
		$\backslash /$				5.0	_						
4 - 6	S-1	Х	4 - 5 - 6 - 8	20	11		-	\cdots	As Above (SP)				
		/											
		$ \rightarrow $				1 -							
		\mathbf{V}		40	_								
6 - 8	S-2	Ň	7 - 5 - 4 - 4	18	9			:•:•:	As Above, Loose ((SP)			
		\land					1						
		\setminus /				1 –							
8 - 10	S-3	Y	4 - 4 - 3 - 4	20	7	_			As Above, Loose	(SP)			
	_	$ \Lambda $, , ,	, , , , , , , , , , , , , , , , , , ,			
						10.0	_						
							_						
							_						
							-						
						1 -							
12 15	S 6	V	4 7 9 10	20	15				An Above Medium	Donoo (SD)			Finer Send
13 - 15	3-0	$ \Lambda $	4 - 7 - 0 - 12	20	15				As Above, iviedium	i Delise (SP)			
		/				15.0		::::					
								:•:•:					
	l					_	4						
	l						-						
						-	-						
							-						
						+ -							
		\mathbf{V}											Trace Gravel, Silt
18 - 20	S-7	X	5 - 6 - 9 - 10	20	15		-		As Above (SP)				Lenses, Very Moist @ 19.0 fbas to 19.5 fbas
		\land				20.0		\cdot					10.0 1590 10 10.0 1590
									Boring Log B-1 Te	rminated at a Depth	of 20.0 Feet Below Grour	nd Surface	
	l					_							
	ĺ					_	4						
	l						_						
	l					-	-						
							-						
	ĺ					-	-						
	l					25.0	-						
	l					I –							
1					1	1	1						

NOTES: bgs = below ground surface, NA = Not Applicable, NE = Not Encountered, NS = Not Surveyed, P = Perched

Boring No.: B-2

Proiect:		Propo	sed Blackwood Bar	nsbor	o Road	Realiann	ient				WAI Proiect No.:	GJ1815988.000	
Location:		108 E	gg Harbor Road: Bl	ackwo	od (Wa	shinaton	Township): Glo	uceste	r County, NJ		Client:	The Ferber Com	oanv. Inc.
Surface El	evatio	n:	± NS fee	t		g	Date Started:		11/26/2018	Water I	Depth Elevation	Cave-In	Depth Elevation
Terminatio	on Dep	th:	20.0 fee	t bas			Date Complete	- ed:	11/26/2018	(feet	bgs) (feet)	(fe	et bas) (feet)
Proposed	Locati	on:	Roadway				Loaged By:	MH -		Durina:	NE I T	(12	
Drill / Test	Metho	od:	HSA / SPT				Contractor:	ETD		At Completion:	<u> </u>	At Completion:	14.0 / 巖
							Equipment:	Geopr	obe 7822DT	24 Hours:	▼	24 Hours:	<u> </u>
						_				<u> </u>	' ¥		[_] [_]
	SA	MPLE	INFORMATION	l		DEPTH	етрат	•		DESCRIPTION			DEMARKS
Depth	Na	T	Blaue Bas 6"	Rec.		(faat)	SIKAI	A		DESCRIPTION (Classi	OF MATERIALS		REIWIARNS
(teet)	NO	туре	Blows Per 6"	(IN.)	N	(feet) 0.0		1		(01855)	lication		
0 - 2	S-1	X	14 - 8 - 5 - 5	18	13	2.0	FILL	*	Brown Silty Sand	with Gravel, Moist (FILL)		50% Concrete 25% Mulch Trace Brick
2 - 4	S-2	X	8 - 11 - 11 - 10	20	22		COASTAL PLAIN DEPOSITS		Light Brown Poorl	y Graded Sand with Gra	ıvel, Very Moist, Mediui	m Dense (SP)	Spoon Wet
4 - 6	S-3	X	4 - 4 - 4 - 4	20	8	5.0		Less Gravel					
6 - 8	S-4	X	3 - 3 - 3 - 3	20	6				As Above (SP)				More Gravel
8 - 10	S-5	X	4 - 5 - 5 - 5	18	10	9.0 10.0			As Above, Mediur Brown Clayey Sar	n Dense (SP) nd, Moist, Medium Dens	e (SC)		
						13.0	- - - - - - - -						
13 - 15	S-6	X	3 - 5 - 5 - 5	20	10	15.0			Brown Poorly Gra	ded Sand, Moist, Mediu	m Dense (SP)		
						-							
18 - 20	S-7	X	3 - 4 - 8 - 8	20	12	20.0			As Above, Brown	to Dark Brown (SP)			
									Boring Log B-2 Te	erminated at a Depth of :	20.0 Feet Below Groun	d Surface	

Boring No.: B-3

Page 1 of 1

Project:		Propo	osed Blackwood Bar	nsbor	o Road	Realignm	ent			WA	Project No.:	GJ1815988.000	
Location:		108 E	gg Harbor Road; BI	ackwo	ood (Wa	ishington	Township); Glo	ucester	County, NJ		Client:	The Ferber Com	pany, Inc.
Surface El	levatio	n:	± NS fee	t			Date Started:	-	11/26/2018	Water Dep	th Elevation	Cave-Ir	Depth Elevation
Terminatio	on Dep	oth:	20.0 fee	t bgs			Date Complete	ed: _	11/26/2018	(leet bg	s) (leet)	(fe	et bgs) (feet)
Proposed	Locat	on:	Trash Enclosu	ıre			Logged By:	MH		During: N	<u>1E </u> Ţ		
Drill / Test	Metho	od:	HSA / SPT				Contractor:	ETD		At Completion:	<u></u> ∣▽	At Completion:	<u> 15.0 </u>
							Equipment:	Geopr	obe 7822DT	24 Hours:	<u></u> Ţ	24 Hours:	<u> 🖄</u>
	SA	MPLE	E INFORMATION	I		DEPTH	STRAT	Δ					DEMARKS
Depth (foot)	No	Type	Blows Por 6"	Rec.	N	(foot)	SIRAL	A		(Classific	tion)		REWARKS
(1001)		туре	Blows I el C	()		0.0				(
						1 -	FILL	3333	Reddish-Brown to	Black Mulch with Gravel, V	ery Moist (FILL)		
		\mathbf{V}				-		\otimes					
0 - 2	S-1	Ň	1 - 7 - 7 - 9	16	14	1.5		\times					
		\vee V				-	COASTAL	·.·	Brown Poorly Gra	ded Sand, Moist, Medium D	ense (SP)		
						1 –							
2 - 1	S-2	V	5 - 7 - 9 - 8	18	18		DEFOOTO		As Above (SP)				
2 7	02	$ \Lambda $	0 1 0 0	10	10	_			, lo , lo vio (or)				
		$\langle \rangle$				↓ _							
		Λ /				-		••••					
4 - 6	S-1	X	4 - 3 - 5 - 4	20	6	5.0	-		As Above, Loose	(SP)			
		\backslash				-							
		$\left(\rightarrow \right)$					-						
		$\backslash /$				-							
6 - 8	S-2	Х	5 - 4 - 3 - 4	20	7		-		As Above (SP)				Trace Gravel
		$/ \setminus$				-							
		$ \rightarrow $				1 -	-						
0 10		V		00	<u> </u>	-			A. Altaria (OD)				Trees Original
8 - 10	5-3	Λ	4 - 4 - 5 - 5	20	9]		AS ADOVE (SP)				I race Gravel
		$\langle \rangle$				10.0							
						_							
						-	-						
							-						
						-	-						
						1 -	-						
		\mathbf{V}				-							
13 - 15	S-6	Ň	3 - 3 - 4 - 5	22	7		_		As Above, Gravel	(SP)			Larger Granular Sand
		\vee V				15.0							
] _]						
						_	1						
						-	4						
						-	4						
						-	-						
						1 —	-						
		$\backslash /$				-	1						
18 - 20	S-7	X	4 - 6 - 7 - 8	20	13			1494 (As Above, Mediur	n Denes (SP)			
		/				20.0	1	:::					
						Ī]		Boring Log B-3 Te	erminated at a Depth of 20.0	Feet Below Grou	nd Surface	
]						
						.	1						
							4						
						-	4						
							4						
						-	-						
						-	-						
						25.0	1						
						-	1						
L					I	<u> </u>	<u> </u>		I				

NOTES: bgs = below ground surface, NA = Not Applicable, NE = Not Encountered, NS = Not Surveyed, P = Perched

Boring No.: B-4

Project:		Propo	osed Blackwood Bar	nsbor	o Road	Realignn	ient				WAI Pr	oject No.:	GJ1815988.000	
Location:		108 E	gg Harbor Road; Bl	ackwo	ood (Wa	shington	Township); Glo	uceste	r County, NJ			Client:	The Ferber Comp	bany, Inc.
Surface E	levatio	n:	\pm NS fee	t			Date Started:		11/26/2018	Wate	er Depth	Elevation	Cave-In	Depth Elevation
Terminatio	on Dep	oth:	20.0 fee	t bgs			Date Complete	ed:	11/26/2018	(f	eet bgs)	(feet)	(fe	et bgs) (feet)
Proposed	Locat	ion:	Building				Logged By:	MH		During:	NE	T		
Drill / Test	Meth	od:	HSA / SPT				Contractor:	ETD		At Completion:		I <u></u> ∇	At Completion:	15.0 🔛
							Equipment:	Geopr	obe 7822DT	24 Hours:		<u></u> ¥	24 Hours:	<u> </u> <u>\</u>
	SA	MPLI				DEDTI								
Depth	<u> </u>			Rec.			STRAT	Α		DESCRIPTIC	ON OF M	ATERIALS		REMARKS
(feet)	No	Туре	Blows Per 6"	(in.)	N	(feet)				(Clas	sificatio	on)		
		—				0.0	FILL	XXX						
		\mathbb{N}					-	\otimes						25% Concrete
0 - 2	S-1	ΙX	15 - 6 - 10 - 16	16	16		-	\otimes	Brown Silty Sand	with Gravel, Moist (F	ILL)			Trace Wood
		$V \setminus$						\otimes						Hace block
		∇						\otimes						
2 - 4	S-2	ΙX	10 - 14 - 10 - 14	18	24	3.0	004074	<u> </u>	As Above (FILL)			D (0D)		Trace Brick
		$ \land $					PLAIN		Brown to Gray Po	oorly Graded Sand, M	loist, Mediu	im Dense (SP)		
		\mapsto				- 1	DEPOSITS	: : :						
		\mathbb{N}				5.0	-							
4 - 6	S-1	Ň	5 - 4 - 4 - 5	18	8	-	1		As Above, Loose	(SP)				
		\land												
		\wedge /												
6 - 8	S-2	ΙX	4 - 3 - 3 - 4	20	6	_	-	::::	As Above (SP)					Trace Gravel
		$ \land $					-	::::						
		\mapsto				- 1	-							
		\mathbb{N}					-							
8 - 10	S-3	Ň	2 - 2 - 2 - 4	20	4	-	1		As Above (SP)					Clay Lenses
		/				10.0								
							4							
						_	-							
							-							
						-	-	::::						
		∇												
13 - 15	S-6	ΙX	3 - 5 - 5 - 5	20	10		-		Light Brown Poor	ly Graded Sand with	Silt, Moist,	Medium Dense	(SP-SM)	
		$ \land $				15.0			ľ	-			. ,	
<u> </u>		<u> </u>				15.0	1							
							4							
							1							
]							
							4							
<u> </u>		L ,				- 1	4							
		$\backslash /$					-							
18 - 20	S-7	X	3 - 5 - 5 - 6	20	10	-	-		As Above (SP-SI	۸)				Clay Lenses
		$V \setminus$				20.0	1							
									Boring Log B-4 T	erminated at a Depth	of 20.0 Fee	et Below Groun	d Surface	
						_	4							
							4							
						_	4							
							-							
							1							
							1							
						25.0	4							

Boring No.: B-5

Project:		Propo	osed Blackwood Bar	nsbord	o Road	Realignm	ent				WAI Project I	No.: GJ1815	988.000
Location:		108 E	gg Harbor Road; Bl	ackwo	od (Wa	shington	Township); Glo	oucester	r County, NJ		Clie	ent: The Fer	ber Company, Inc.
Surface E	levatio	n:	± NS fee	t		ľ	Date Started:		11/26/2018	Wate	er Depth Eleva	tion	Cave-In Depth Elevation
Terminatio	on Dep	th:	10.0 fee	t bgs		l l	Date Complete	ed:	11/26/2018	(fe	eet bgs) (feet)		(feet bgs) (feet)
Proposed	Locat	on:	Parking Area			I	.ogged By:	MH		During:	NE	\mathbf{V}_{-}	
Drill / Test	Metho	od:	HSA / SPT			(Contractor:	ETD		At Completion:		$\ \ \ \ \ \ \ \ \ \ \ \ \ $	pletion:
						ľ	Equipment:	Geopr	obe 7822DT	24 Hours:		_ 🕎 24 Hour	rs: <u> </u>
	SA	MPLE	E INFORMATION			DEPTH	CTDAT	•		DECODIDEIO			DEMARKO
Depth (feet)	No	Type	Blows Par 6"	Rec.	N	(feet)	SIRAI	A		DESCRIPTIO (Clas	sification)	IAL5	REMARKS
(leet)	110	туре	Blowstero	()		0.0				(0140			
0 - 2	S-1	X	2 - 4 - 7 - 6	12	11	2.0	FILL	***	Brown Silty Sand,	Moist (FILL)			Mulch Trace Wood
2 - 4	S-2	X	5 - 5 - 4 - 5	18	9	- -	COASTAL PLAIN DEPOSITS		Light to Gray Brow	wn Poorly Graded Sa	nd, Moist, Loose (\$	SP)	
4 - 6	S-1	X	2 - 2 - 2 - 2	20	9	5.0			As Above (SP)				
6 - 8	S-2	X	3 - 3 - 3 - 3	20	6	- 			As Above (SP)				Trace Gravel
8 - 10	S-3	Х	3 - 3 - 3 - 4	20	6	10.0			As Above (SP)				
						-			Boring Log B-6 1	erminated at a Depth	of 10.0 Feet Below	Ground Surface	
						-							
						-							
							•						
						15.0							
						_							
						-							
						-							
						_							
						-							
						-							
						20.0							
						-							
						-							
						-	1						
						_							
						-							
						-							
						25.0							

Boring No.: B-6

Project:		Propo	osed Blackwood Bar	nsbor	o Road	Realignm	ient			WAI Pi	roject No.:	GJ1815988.000	
Location:		108 E	gg Harbor Road; Bl	ackwo	ood (Wa	shington	Township); Glo	ouceste	r County, NJ	T	Client:	The Ferber Comp	bany, Inc.
Surface E	levatio	n:	± NS fee	t			Date Started:	-	11/27/2018	Water Depth	Elevation	Cave-Ir	Depth Elevation
Terminatio	on Dep	oth:	20.0 fee	t bgs			Date Complete	ed:	11/27/2018	(feet bgs)	(feet)	(fe	et bgs) (feet)
Proposed	Locati	ion:	Canopy				Logged By:	MH		During: NE	<u> </u>		
Drill / Test	Metho	od:	HSA / SPT				Contractor:	ETD		At Completion:	I <u></u> ▽	At Completion:	14.0 📓
							Equipment:	Geopr	obe 7822DT	24 Hours:	<u></u> ▼	24 Hours:	<u> 🖄</u>
	SA	MPLE		I		DEPTH		•					DEMARKO
Depth (foot)	No	Type	Blows Por 6"	Rec.	N	(foot)	SIRAI	A		Classificatio	n)	•	REMARNS
(1001)	NO	туре	Blows I el o	()		0.0		1		(,		
						0.5	TOPSOIL	<u>>>1/</u>	6" Topsoil				
0.2	G 1	V	1 6 5 6	20	11	1.0	FILL	\times	Brown Silty Sand	with Gravel, Trace Roots (FILL)			Re-Worked Material
0-2	3-1	$ \Lambda $	1 - 0 - 3 - 0	20			COASTAL		Brown to Light Br	own Poorly Graded Sand, Moist	, Medium Dens	e (SP)	
						_	DEPOSITS						
		Ν /											
2 - 4	S-2	X	4 - 4 - 4 - 4	20	8				As Above, Loose	(SP)			
		$ \rangle\rangle$					_						
		(\rightarrow)				+ -	-	: : :					
		$ \backslash / $				5.0	1						
4 - 6	S-1	X	3 - 4 - 4 - 5	20	8		1		As Above, Grave	(SP)			
		V V				·	1						
	1					1 -							
6-8	S-2	V	4 - 5 - 4 - 5	22	q	_			As Above (SP)				Less Gravel
0 0	02	$ \Lambda $	- 0 - 0	22	Ŭ								
		()				4 _	-						
		Λ /					_						
8 - 10	S-3	X	5 - 5 - 6 - 6	22	11	-			As Above, Mediu	m Denes (SP)			Clay Lenses
		/				10.0	-						
		<u> </u>											
							-						
								: : : : :					
								: : : : :					
						4 _	-						
		Λ /											
13 - 15	S-6	X	3 - 4 - 6 - 5	22	10		1		As Above, No Gra	avel (SP)			
		/				15.0	_						
		r Y					-	::::					
						·		::::					
						-	1	::::					
						l .]	::::					
						.		::::					
						4 _		::::					
		Λ				.	4	::::					
18 - 20	S-7	X	4 - 5 - 6 - 7	22	11	-	-	::::	As Above (SP)				
		$ \rangle $				20.0	-						
		r Y				20.0			Boring Log B-7 T	erminated at a Depth of 20.0 Fe	et Below Grour	nd Surface	
						· ·	-		5 5	,			
						-	-						
						· ·	1						
						-							
						_							
						.							
						_							
						05.0	-						
						25.0	4						
1							1						

Boring No.: B-7

Page 1 of 1

Project:		Propo	sed Blackwood Bar	nsbor	o Road	Realignm	ent				WAI Pr	oject No.:	GJ1815988.000	
Location:		108 E	gg Harbor Road; Bl	lackwo	od (Wa	shington	Township); Glo	oucester	r County, NJ			Client:	The Ferber Comp	oany, Inc.
Surface El	evatio	n:	\pm NS fee	t			Date Started:	_	11/27/2018	Wate	er Depth	Elevation	Cave-In	Depth Elevation
Terminatio	on Dep	th:	20.0 fee	t bgs			Date Complet	ed:	11/27/2018	(fe	eet bgs)	(feet)	(fe	et bgs) (feet)
Proposed	Locati	on:	Building				Logged By:	MH		During:	NE	T		
Drill / Test	Metho	od:	HSA / SPT				Contractor:	ETD		At Completion:		<u></u>	At Completion:	<u> 15.0 a</u>
							Equipment:	Geopr	obe 7822DT	24 Hours:		<u> </u>	24 Hours:	<u> 🖄</u>
	SA	MPLE		1		DEPTH	I							
Depth				Rec.			STRAT	Ά		DESCRIPTIO	N OF M	ATERIALS	;	REMARKS
(feet)	No	Туре	Blows Per 6"	(in.)	N	(feet)				(Clas	sificatio	on)		
						0.0	TOPSOIL	SN1/2	6" Topsoil					
		$\backslash /$				0.5	FILL	XXX	Brown Silty Sand.	Trace Roots, Moist ((FILL)			Re-Worked Material
0 - 2	S-1	Х	1 - 4 - 6 - 5	18	11			\otimes			· · ·			
		/ N				2.0		\otimes						
						1 —	COASTAL							
2 - 4	S-2	V	4 - 4 - 4 - 4	20	8		PLAIN DEPOSITS		Brown Poorly Gra	ded Sand with Silt_M	loist Loose	(SP-SM)		
		Λ			-	_				,	,	()		
		()				┦ _								
		$\backslash /$				5.0								
4 - 6	S-1	Х	3 - 1 - 5 - 5	22	6	5.0			As Above (SP-SM)				
		/				-								
		$\left(\rightarrow \right)$				1 —								
		\mathbf{V}				-								T 0 1
6-8	S-2	Λ	6 - 4 - 5 - 6	22	9				As Above (SP-SM	1)				Trace Gravel
		/												
		\setminus /				Ι –								
8 - 10	S-3	X	6 - 4 - 5 - 5	22	9				As Above, Orange	e Brown, Gravel (SP-	SM)			
		\wedge				10.0	-		-					
						10.0								
						-								
						-								
						_								
		Λ /				-								
13 - 15	S-6	X	3 - 5 - 6 - 8	22	11				As Above, Light B	rown, Medium Dense	e (SP-SM)			
		\wedge				45.0	-0		-					
				$\left - \right $		15.0 <u>B</u>	1							
						-	1							
						-	1							
						-	1							
						-	1							
						L _]							
		$\langle 7$				Ι.]							
18 - 20	S-7	Υ	5 - 8 - 11 - 11	22	19	_	4		As Above, Orange	e Brown (SP-SM)				
-		$ \rangle $					4			. /				
						20.0	 	ST N	Boring Log B-8 Te	erminated at a Depth	of 20.0 Eee	t Below Groun	nd Surface	
						-	4		Doring Log D-0 Te	ar a Depth	51 20.0 Fee		ia Ounale	
						-	1							
						-	1							
						-	1							
						-]							
						_]							
						_	1							
							1							
						25.0	4							
									1					

Boring No.: B-8

Page 1 of 1

Project:		Propo	osed Blackwood Bar	nsbor	o Road	Realignm	ent				WAI Pr	oject No.:	GJ1815988.000	
Location:		108 E	gg Harbor Road; Bl	ackwo	ood (Wa	shington	Township); Glo	oucester	r County, NJ			Client:	The Ferber Com	oany, Inc.
Surface El	evatio	n:	± NS fee	t		1	Date Started:		11/27/2018	Wate	r Depth	Elevation	Cave-Ir	Depth Elevation
Terminatio	on Dep	th:	25.0 fee	t bgs		1	Date Complete	ed:	11/27/2018	(fe	et bgs)	(feet)	(fe	et bgs) (feet)
Proposed	Locati	on:	UST Area			I	Logged By:	MH		During:	23.0	T7		
Drill / Test	Metho	od:	HSA / SPT				Contractor:	ETD		At Completion:		□ ▽	At Completion:	21.0 📓
							Equipment:	Geopr	obe 7822DT	24 Hours:		<u> </u>	24 Hours:	I 🖄
	SA	MPLE	E INFORMATION			DEPTH								
Depth				Rec.			STRAT	Ά		DESCRIPTIO	N OF M	ATERIALS		REMARKS
(feet)	No	Туре	Blows Per 6"	(in.)	N	(feet)		-		(Clas	sificatio	on)		
						0.0	TOPSOIL	SNUZ	6" Topsoil					
		\setminus				0.0	COASTAL		Brown Clavev Sar	nd. Moist. Verv Loose	(SC)			
0 - 2	S-1	Х	1 - 1 - 1 - 1	18	2	-	PLAIN		- , ,	, , ,	(-)			
		$/ \setminus$				2.0	DEPOSITS							
		$ \rightarrow $				1 —								
0.4		\mathbf{V}		00				::::	Dense Densela Ora	de d Oere d Maliat I aa				
2 - 4	5-2	Λ	1 - 1 - 3 - 4	20	4		1		Brown Poony Gra	ued Sand, Moist, Loo	se (SP)			
		\square												
		\setminus /												
4 - 6	S-1	Y	3 - 3 - 3 - 3	20	6	5.0	-		As Above, Orange	e Brown (SP)				
		\wedge				-								
		(\rightarrow)				4 —	_	\cdot						
		\backslash /				-								
6 - 8	S-2	Х	3 - 3 - 4 - 4	20	7	-			As Above (SP)					Trace Gravel
		$/ \setminus$				-								
		\leftrightarrow				1 —								
		\mathbf{V}							(
8 - 10	S-3	Å	5 - 5 - 4 - 4	18	9				As Above (SP)					
		/				10.0		::::						
						1 –								
						_								
						-								
							-							
						-								
		\mathbf{V}												
13 - 15	S-6	Х	3 - 4 - 6 - 6	22	10	-			As Above, Light B	rown, Medium Dense	(SP)			
		/				15.0		\cdot						
						1 —	1							
						-]							
						_]							
						_								
						-	-							
						┥ —	4							
		$\backslash /$				-	-							
18 - 20	S-7	Х	5 - 5 - 7 - 8	22	12	-			As Above, Orange	e Brown (SP)				
		/				20.0								
						1 —	1							
						20								
						_	1							
						_ ⁻]							
						_								
							¥							
		$\backslash /$				-	4	::::						
23 - 25	S-8	X	6 - 5 - 5 - 7		10	_	-		As Above, Wet (S	P)				
		\backslash				25.0	4							
						20.0			Boring Log B-0 Te	rminated at a Depth	of 20.0 Ee	et Below Group	d Surface	
1					1	1	1		Loning Log D-0 10			. Joiow Oroun		

NOTES: bgs = below ground surface, NA = Not Applicable, NE = Not Encountered, NS = Not Surveyed, P = Perched

Soil Profile Pit No.: SPP-1

					1.07		
Project:	Proposed	Wawa Foo	od Marke	et & Restau	irant Site	WAI Project No.: GJ1815987.000	
Location:	108 Egg l	Harbor Roa	id; Black	wood (Was	sningtown Towns	nip), Gioucester County, NJ Client: The Ferber Compa	ny, Inc.
Surface Elev	ation: ±	NS	teet		Date Started:	T1/26/2018 Water Depth Elevation Estimated	Seasonal High
Iermination	Depth:	10.0	teet bgs	6	Date Comple	ted: 11/26/2018 (reet bys) (reet) Groundwater	Depth Elevation
Proposed Lo	cation:	SWM			Logged By:	$\frac{MH}{DW} = \frac{DUring:}{NE} = \frac{NE}{D} = \frac{T}{T} = $, index (index)
Excavating N	lethod:	Test Pit E	xcavatior	า	Contractor:	PW At Completion: At Completion: At Completion:	
Test Method	:	Visual Ob	servation	1	Rig Type:	<u>Case 580</u> 24 Hours: <u></u> ▼	
SAMPLE	INFORM	IATION	DE	EPTH		DESCRIPTION OF MATERIALS	
Denth (feet)	Number	Turce		foot	HORIZON	(Classification)	REMARKS
Deptil (leet)	Number	Type		leet		(,	
			0.0				
				0 - 1.5	FILL	Buried Mulch and Topsoli; No Gravel; No Cobbles; Very Molst; Loose; No Mottling	
			1.0	-			
			2.0	1.5 - 10	COASTAL PLAIN	Olive Brown (2.5Y 4/3) SAND; 5% Gravel; Granular; Moist; No Roots; No Mottling; Gradual Boundary	
			2.0		DEPOSITS		
			_				
			3.0				
			_				
			4.0				
						S	Sidewall Collapse @
			-				1.0 fbgs to 6.0 fbgs
			5.0				0 fbgs to 10.0 fbgs
			_				
			6.0				
							nfiltration Test @ 6.0 fbgs
			-				
			7.0				
			8.0				
			9.0				
			_				
			10.0				
	1	İ	1	1		Soil Profile Pit SPP-1 Terminated at a Depth of 10.0 Feet Below Ground Surface Due to Sidewall	
			-	-		Collapse	
			11.0				
			-				
			12.0				
			40.0	1	1		
			13.0				
			14.0	1			
			14.0	-			
			_				
			15.0				
1							

Soil Profile Pit No.: SPP-2

Project:	Proposed	Wawa Foo	od Marke	et & Restau	rant Site			WAI F	roject No.	:	GJ1815987.00	0
Location:	108 Egg I	Harbor Roa	id; Black	wood (Was	shingtown Towns	hip), Gloucester County, N	IJ		Client	:	The Ferber Co	mpany, Inc.
Surface Eleva	ation: ±	NS	feet		Date Started:	11/26/2018	Wate	r Depth	Elevatio	n	Estima	ated Seasonal High
Termination I	Depth:	10.0	feet bgs	6	Date Complet	ed: 11/26/2018	(fe	et bgs)	(feet)		Groundw	ater Depth Elevation
Proposed Lo	cation:	SWM	-		Logged By:	MH	During:	NE		V		(feet bgs) (feet)
Excavating M	lethod:	Test Pit F	xcavation	า	Contractor:	PW	At Completion:		' 	-~	At Completion	·
Tost Mothod:	ictilou.	Vieual Ob	convotion		Big Type:	<u>Case 580</u>	24 Hours:		I	- 🍝	At completion	
Test Methou.		VISUAI OD	Servation	1	Rig Type.	Case 500	24 Hours.			- ¥		
SAMPLE	INFORM	ATION	DE	EPTH			DESCRIPTION	OF MAT	ERIALS			
Danth (fact)	Number	Time		e	HORIZON		(Classif	fication)				REMARKS
Depth (feet)	Number	Туре	1	reet			(,				
			0.0									
				0 - 2.5	FILL	Topsoil and Mulch Blend						
			1.0									
			_									
			2.0									
				-								
			3.0	2.5 - 10	COASTAL PLAIN	Olive Brown (2.5Y 4/3) SAND	; Trace Gravel; Gran	ular; Moist;	No Roots; N	o Mott	ling; Gradual	
			3.0	-	DEPOSITS	Boundary						
			4.0									
			-									
			5.0									
												Sidewall Collapse @
			-									5.0 ibgs to 10.0 ibgs
			6.0									
				-								
			7.0									
			_									
			8.0									
			9.0	_								
			-									
			10.0		ļ		ated at a Damit of the	0 Ecot Dol	Crow d C	urfo -	Due to Oid!	
						Collapse	ањи ага дертп от 10.	U Feet Belo	w Grouna S	unace	Due to Sidewall	
			-	1		,						
			11.0	4								
			-									
			12.0									
			-	-								
			13.0									
			-									
			-	-								
			14.0									
			-									
			_									
			15.0									
				-								

Soil Profile Pit No.: SPP-3

Project:	Proposed	Wawa Foo	od Marke	et & Restau	rant Site			WAI P	roject No.		GJ1815987.000	
Location:	108 Egg	Harbor Roa	d; Black	wood (Was	shingtown Towns	hip), Gloucester County, N	1J		Client		The Ferber Com	bany, Inc.
Surface Elev	ation: ±	NS	feet		Date Started:	11/26/2018	Wate	r Depth	Elevatior	I	Estimate	d Seasonal High
Termination	Depth:	10.0	feet bgs	3	Date Comple	ted: 11/26/2018	(fe	et bgs)	(Teet)		Groundwate	er Depth Elevation
Proposed Lo	cation:	SWM			Logged By:	MH	During:	NE		$\overline{\Lambda}$	(f	eet bgs) (feet)
Excavating M	lethod:	Test Pit E	kcavatior	ı	Contractor:	PW	At Completion:			∇	At Completion:	<u> </u>
Test Method	:	Visual Ob	servation	1	Rig Type:	Case 580	24 Hours:			Ŧ		
SAMPL F	INFORM		DF	EPTH								
		-			HORIZON		(Classif	ication)	LNIALS			REMARKS
Depth (feet)	Number	Гуре	f	reet			(0183311	. sation)				
			0.0									
				0 - 1.5	TOPSOIL	Topsoil and Mulch Blend						Blended with Cobbles
				-								
			1.0									
			-	1.5 - 10	COASTAL PLAIN	Olive Brown (2.5Y 4/3) SAND); Trace Gravel; Granu	ılar; Moist:	No Roots; No	o Mott	ling; Gradual	1
			2.0		DEPOSITS	Boundary					0.	
			-									
			3.0									
			-									
			4.0									
				-								
			5.0									
			_									
			6.0									
												No Gravel @ 6.0 fbgs to 10.0 fbgs
			_									0.0 1093 to 10.0 1095
			7.0									
			8.0									
			9.0									
			-	1								
			10.0			Soil Profile Dit SDD 4 Termin	ated at a Danth of 40		W Ground C	urfocc		
						Collapse	aleu al a Depth of 10.	o reel Belo	w Ground St	inace		
			11.0	-								
			10.0									
			12.0	-								
			12.0	1								
			13.0	-								
			14.0	-								
				1								
			15.0									

Soil Profile Pit No.: SPP-4

Project:	Proposed	Wawa Foo	od Marke	et & Restau	rant Site		WAI F	Project No.:	GJ1815987.000	
Location:	108 Egg I	Harbor Roa	id; Black	wood (Was	shingtown Towns	hip), Gloucester County, N	IJ	Client:	The Ferber Comp	any, Inc.
Surface Eleva	ation: ±	NS	feet		Date Started:	11/26/2018	Water Depth	Elevation	Estimate	d Seasonal High
Termination I	Depth:	10.0	feet bgs	5	Date Complet	ed: 11/26/2018	(feet bgs)	(feet)	Groundwate	r Depth Elevation
Proposed Lo	cation:	SWM			Logged By:	MH	During: NE	T 1	(fe	eet bgs) (feet)
Excavating M	lethod:	Test Pit E	xcavatior	า	Contractor:	PW	At Completion:	▽	At Completion:	<u> </u>
Test Method:		Visual Ob	servation	l	Rig Type:	Case 580	24 Hours:	▼		
SAMPLE	INFORM	ΙΔΤΙΟΝ	DE	ЭТН					1	
					HORIZON		(Classification)	ERIALS		REMARKS
Depth (feet)	Number	Туре	1	feet			(Oldssillediol)			
			0.0							
				0- 1.5	TOPSOIL	Topsoil and Mulch Blend				
			-							
			1.0							
				1.5 - 10	COASTAL PLAIN	Olive Brown (2.5Y 4/3) SAND	; 5% Gravel; Granular; Moist; No	o Roots; No Mottlin	g; Gradual Boundary	
			2.0	-	DEPOSITS					
			3.0							
			5.0							
			_]						
			4.0							
										Infiltration Test @
			_							4.0 fbgs
			5.0							
										Sidewall Collapse @
			-	-						5.0 fbgs to 10.0 fbgs
			6.0							
										Less Gravel Content @
			-	-						6.0 fbgs to 10.0 fbgs
			7.0							
			-							
			8.0							
			-	-						
			9.0	-						
			10.0	1 1						
			10.0			Soil Profile Pit SPP-4 Termina	ated at a Depth of 10.0 Feet Belo	ow Ground Surface	Due to Sidewall	
			_			Collapse		bandoo		
			11.0							
				1						
			_	4						
			12.0							
			-	1						
			-	4						
			13.0							
			-] 1						
			-	-						
			14.0							
			-	-						
			15.0	.						
1	1	1	1	1						1

Soil Profile Pit No.: SPP-5

Project:	Proposed	Wawa Foo	od Marke	t & Restau	rant Site			WAI F	Project No	.:	GJ1815987.000	
Location:	108 Egg H	Harbor Roa	id; Black	wood (Was	shingtown Towns	hip), Gloucester County,	NJ		Clien	t:	The Ferber Com	bany, Inc.
Surface Eleva	ation: ±	NS	feet		Date Started:	11/26/2018	Wate	r Depth	Elevatio	n	Estimate	d Seasonal High
Termination I	Depth:	11.0	feet bgs		Date Complet	ted: 11/26/2018	(fe	et bgs)	(feet)		Groundwat	er Depth Elevation
Proposed Lo	cation:	SWM			Logged By:	MH	During:	NE		\mathbf{T}	(f	eet bgs) (feet)
Excavating M	lethod:	Test Pit E	xcavation	ו	Contractor:	PW	At Completion:			∇	At Completion:	<u> </u>
Test Method:		Visual Ob	servation		Rig Type:	Case 580	24 Hours:			_T		
SAMPLE	INFORM	ATION	DE	PTH			DESCRIPTION	OF MAT	ERIALS			DEMARKS
Depth (feet)	Number	Туре	f	eet	HORIZON		(Classif	ication)				REMARKS
			0.0									
			0.0	0 - 1	FILL	Dark Grav (5Y 4/1) LOAMY	SAND: 15% Cobbles 1	10% Grave	l: Granular:	Moist [.]	Trace Roots: No	Trace Brick Pieces
			_			Mottling; Gradual Boundary	,		.,	,	,	
			10									
			1.0	1 - 11	COASTAL PLAIN	Dark Reddish-Brown (5YR 2	2.5/2) SAND; 5% Grave	l; Granular	; Moist; No I	Roots;	No Mottling; Gradual	-
			_		DEPOSITS	Boundary						
			2.0									
			—	1								
			_	1								
			3.0									
				1								Infiltration Test @
			-	4								3.0 fbgs
			4.0									
			5.0									
			-	•								
			6.0									
			-									
			7.0									
			• •									
			0.0									
			9.0									
				1								
			_	l								
			10.0									
			-	1								
			-									
			11.0									
						Soil Profile Pit SPP-5 Termi	nated at a Depth of 11.	0 Feet Belo	ow Ground S	Surface		
			-	1								
			12.0	ļ								
			-	1								
			13.0	ļ								
			-	1								
			14.0	ł								
			-	1								
			15.0									

Soil Profile Pit No.: SPP-6

Durations	Deser	\A/ E							N	0 14045007 000	
Project:	Proposed	Wawa Fo	od Marke	et & Restau	irant Site			WAI Project	No.:	GJ1815987.000	
Location:	108 Egg l	Harbor Roa	ad; Black	wood (Was	sningtown Towns	snip), Gioucester County,	NJ	C	iient:	i ne ⊢erber Comp	any, Inc.
Surface Eleva	ation: ±	NS	Teet	_	Date Started:	11/26/2018	- Water I	∪eptn Elev thas\ /foor	ation	Estimated	a Seasonal High
Dresses	Deptn:	11.0	ieet bgs	5	Larre Comple	ieu: 11/26/2018	Durin		, 	Groundwate	r Deptn Elevation
Proposed Lo	cation:	SVVM		-	Logged By:		During:	<u>INE </u>	<u> </u>	(le	, (icer)
Excavating N	ietnod:	I est Pit E	xcavatior	n	Contractor:	PW	At Completion:	<u> </u>	¥	At Completion:	<u> </u>
lest Method:		visual Ob	servation	1	Rig Type:	Case 580	24 Hours:	<u> </u>	₹		
SAMPLE	INFORM	IATION	DE	EPTH			DESCRIPTION O	F MATERIA	LS		DEMARKS
Depth (feet)	Number	Туре	1	feet	HURIZUN		(Classific	ation)			REWARKS
,											
			0.0	0 - 3	FILL	Dark Gray (5X //1) LOAMY	SAND: 20% Cobbles 259	% Gravel: Gran	lar: Moist	Trace Roots: No	
				0-0		Mottling; Gradual Boundary	CAND, 2010 CODDICS, 201		iai, inoist,		
			1.0	1							
			1.0	-							
			2.0	1							
			2.0	-							
			_	1							
			3.0								
				3 - 11	COASTAL PLAIN	Olive Brown (2.5Y 4/3) SAN	D; 5% Gravel; Granular; I	Moist; No Roots	No Mottlin	g; Gradual Boundary	
					DEPOSITS	· · ·					
			4.0								
				4							
			5.0								
				4							
			6.0								
				1							
				-							
			7.0								
				1							
			_	-							
			8.0								
				-							
			9.0	1							
			1								
			-	1							
			10.0	4							
			44.0	1							
	 		11.0			Soil Profile Pit SPP-6 Tormi	nated at a Depth of 11.0	Feet Below Grou	nd Surface	<u>.</u>	
			1								
			12.0	1							
			12.0	-							
			13.0								
			10.0	4							
			_								
			14.0								
				1							
			_	4							
			15.0								
				1							
1			1			1					

Soil Profile Pit No.: SSPP-1

Project:	Proposed	Wawa For	od Market	& Fuel St	ation	WAI Project No.: GS1815987 000	
Location:	108 Egg I	Harbor Roa	d, Blackv	vood, NJ		Client: The Ferber Compa	ny, Inc.
Surface Eleva	ation: ±	NS	feet	, -	Date Started:	6/30/2020 Water Depth Elevation Estimated	Seasonal High
Termination	Depth:	12.0	feet bgs		Date Complet	ed: 6/30/2020 (feet bgs) (feet) Groundwater	Depth Elevation
Proposed Lo	cation:	SWM Bas	in -		Logged By:	R. Lombreglia During: NE 🍸 (fee	et bgs) (feet)
Excavating N	lethod:	Test Pit Ex	xcavation		Contractor:	JPC At Completion: NE \bigtriangledown At Completion:	NE
Test Method:		Visual Obs	servation		Rig Type:	460 Volvo 24 Hours: 🗴	
SAMPLE	INFORM		DE	ртн			
		-	6.4		HORIZON	(Classification)	REMARKS
Depth (feet)	Number	Туре	teet	Inches	FILL	10 YR 4/6 Sand, Moist, Fraible Structure: Course, Moderate, Granular, No Roots, No Mottling, 10%	
			0.0			Gravel	race Asphalt
			7			ŀ	Reworked Natural Soils
			1				
			1.0 5	7			
0 - 4	1		2.0				
			<u> </u>				
			_				
			3.0				
			-				
ļ	ļ		4.0		0040741		
					COASTAL PLAIN DEPOSITS	10 YR 6/8 Sand, Moist, Friable, Structure: Coarse, Moderate, Granular, No roots, No Mottling 10% Gravel	
			5.0				
			5.0				
			6.0				
			_				
			7.0				
4 12	2						
4 - 12	-		8.0				
			9.0				
			_				
			10.0				
			-				
			11.0				
			12.0				
			_				
			13.0				
			14.0				
			15.0				
			10.0				

Soil Profile Pit No.: SSPP-2

Project:	Proposed	Wawa For	od Marke	t & Fuel St	ation	WAI Project No.: GS1815987 000	
Location:	108 Eqa l	Harbor Roa	d, Blackv	wood, NJ		Client: The Ferber Compa	ny, Inc.
Surface Elev	ation: ±	NS	feet	.,	Date Started:	6/30/2020 Water Depth Elevation Estimated	Seasonal High
Termination	Depth:	12.0	feet bgs		Date Complet	ed: 6/30/2020 (feet bgs) (feet) Groundwater	Depth Elevation
Proposed Lo	cation:	SWM Bas	in		Logged By:	R. Lombreglia During: NE 🍸 (fee	et bgs) (feet)
Excavating M	lethod:	Test Pit Ex	xcavation	ı	Contractor:	JPC At Completion: NE \bigtriangledown At Completion:	NE
Test Method:	:	Visual Obs	servation		Rig Type:	460 Volvo 24 Hours: 💌	
SAMPLE	INFORM	IATION	DE	PTH		DESCRIPTION OF MATERIALS	DEMARKO
Depth (feet)	Number	Туре	feet	inches	HURIZON	(Classification)	REMARKS
			0.0		FILL	10 YR 4/6 Sand, Moist, Fraible Structure: Course, Moderate, Granular, No Roots, No Mottling, 10%	
0 - 1.5			2	F			
			1.0 5	Z			
	<u> </u>				COASTAL PLAIN	10 YR 6/8 Sand, Moist, Friable, Structure: Coarse, Moderate, Granular, No roots, No Mottling 10%	
			2.0		DEPOSITS	Gravel	
			-	1			
			3.0				
			4.0	1 1			
			4.0				
			5.0				
			_				
			6.0				
1.5 - 12.0			7.0				
			8.0				
			9.0				
			10.0				
			_				
			11.0				
			-	1			
			-				
			12.0				
			13.0				
				1			
			14.0				
			15.0				
1							

Soil Profile Pit No.: SSPP-3

Project:	Proposed	Wawa For	nd Market	& Fuel Sta	ation	WAI Project No . CS1815087 000	
Location:	108 Eaa H	Harbor Roa	d, Blackv	vood. NJ		Client: The Ferber Compa	ny, Inc.
Surface Flev	ation: +	NS	feet		Date Started	6/30/2020 Water Denth Flevation Estimated	Seasonal High
Termination	Depth:	12.0	feet has		Date Complet	red: 6/30/2020 (feet bas) (feet) Groundwater	Depth Flevation
Proposed Lo	cation:	SWM Bas	in		Logged Ry	R Lombreglia During: NE L	et bas) (feet)
Excavating M	lethod:	Test Pit Fr	xcavation		Contractor:	JPC At Completion: NF V At Completion:	NF I
Test Method		Visual Ob	servation		Rig Type	460 Volvo	I
SAMPLE	INFORM	IATION	DE	PTH	HORIZON	DESCRIPTION OF MATERIALS	REMARKS
Depth (feet)	Number	Туре	feet	inches		(Classification)	
0 - 3.0			0.0 1.0 2.0 3.0	7	FILL	Gravel, 10 % Benide	Asphalt and Worked
3.0 - 12.0			4.0 5.0 6.0 7.0 9.0 10.0 11.0 12.0			10 YR 6/8 Sand, Moist, Friable, Structure: Coarse, Moderate, Granular, No roots, No Mottling 10% Gravel	
			13.0 14.0 15.0				

Soil Profile Pit No.: SSPP-4

Drainst	Dror	\//ан- Г	od M		ation				14/41-	Junio - Al		001015007.000		
Project:	Proposed	vvawa Fo			auon				WAIH	-roject No	•.: •.	GS1815987.000		
Location:	IU8 Egg I	harbor Roa	iu, Blackv	vood, NJ				c		bany, Inc.				
Surface Elev	ation: ±	NS	teet		Date Started:		6/30/2020	- Water I	Depth	Elevatio	on	Estimate	d Seasor	hal High
Termination	Depth:	12.0	feet bgs		Date Complet	ed:	6/30/2020	(fee	t bgs)	(feet)		Groundwate	er Depth	Elevation
Proposed Lo	cation:	SWM Bas	sin		Logged By:		R. Lombreglia	During:		$\mathbf{V}_{\mathbf{I}}$	(f	eet bgs)	(feet)	
Excavating N	lethod:	Test Pit E	xcavation	l	Contractor:		JPC	At Completion: NE \heartsuit		At Completion:	NE	l		
Test Method:	:	Visual Ob	servation		Rig Type:		460 Volvo	24 Hours:			T			
SAMPLE	INFORM		DE						-			I		
SAWPLE			DE		HORIZON			DESCRIPTION O	F MAT	ERIALS			R	EMARKS
Depth (feet)	Number	Туре	feet	inches				(Classific	ation)					
			0.0		FILL	10 YF	R 4/6 Sand, Moist, Fra	ible Structure: Course, Mo	oderate,	Granular, No	o Roots	s, No Mottling, 10%	Asphalt D	ebris
0 - 0.5	1					GIAVE	-1						1	
			2										1	
			10		COASTAL PLAIN	10 YF	R 6/8 Sand, Moist, Fria	ble, Structure: Coarse, M	oderate,	Granular, N	o roots	, No Mottling 10%	1	
				Í	DEPUSITS	Grave	51							
			2.0											
			2.0											
			2.0											
			3.0										1	
													1	
													1	
			4.0										1	
													1	
			5.0											
													1	
			6.0											
0.5 - 12.0	2													
			7.0											
													1	
													1	
			8.0										1	
			9.0											
			-											
			10.0											
			-										1	
			11.0										1	
													1	
			12.0										1	
													1	
													1	
			13.0										1	
													1	
			-										1	
			14.0										1	
													1	
			-										1	
			15.0										1	
I	I	I	1			1							1	

Soil Profile Pit No.: SSPP-5

Project:	Pronosed	Wawa For	od Market	& Fuel St	ation				WAI	Project No	:	GS1815987 000		
Location:	108 Eaa H	Harbor Roa	d, Blackv	vood, NJ					11411	Client	:	The Ferber Comp	any, Inc.	
Surface Eleva	ation: ±	0.0	feet	.,	Date Started:	6	/30/2020	Wate	er Depth	Elevation	n	Estimate	d Seasona	al High
Termination I	Depth:	12.0	feet bas		Date Complet	ed: 6	/30/2020	(f	eet bgs)	(feet)		Groundwate	r Depth	Elevation
Proposed Lo	cation:	SWM Bas	in		Logaed By:	F	R. Lombrealia	Durina:	NE		\mathbf{v}	(fe	et bgs)	(feet)
Excavating M	lethod:	Test Pit E	xcavation		Contractor:	J	PC	At Completion:	NE		- 	At Completion:	NE I	
Test Method:		Visual Ob	servation		Rig Type:	4	60 Volvo	24 Hours:			- -	• • •	·	
					• //	_		·		·				
SAMPLE	INFORM	ATION	DE	PTH	HORIZON			DESCRIPTION	OF MAT	ERIALS			RE	MARKS
Depth (feet)	Number	Туре	feet	inches				(Classi	fication)	1				
			0.0		COASTAL PLAIN	10 YR 4	/6 Sand, Moist, Frai	ble Structure: Course,	Moderate,	Granular, No	Roots	s, No Mottling, 10%		
					DEPOSITS	Graver								
			7											
			10 5	7										
				-										
			2.0											
			3.0											
			_											
			4.0											
			_											
			5.0											
0 - 12.0	1		6.0											
			-											
			7.0											
			8.0											
			9.0											
			10.0											
			11.0											
			_											
			12.0											
	1													
			-											
			13.0											
			-											
			14.0											
			-											
			15.0											

APPENDIX B Laboratory Test Results

W AS	HITES s o c i a t	TONE es.inc.		INFILTRATION TEST					
Client:	The Ferber C	Company, Inc.		_ T	est Hole No.:	SPP-1			
Project:	Wawa Food I	Market & Rest	aurant Site		Date:	11/26/2018			
Location:	Blackwood (V	Washington Tv	vp), NJ		Weather:	Cloudy, 48° F			
File No.	GS1815987.0	000		Fi	eld Engineer:	M. Hengler			
Surf. Elev.	NS			Test Dep	oth Ft. Elev.:	6.00 NS			
Reading	Ti	me	Water Lev (inc	el Reading hes)	Water	Time Interval	Rate of Flow		
No.	Start	Finish	Start	Finish	(Inches)	(Hours)	(Inches/Hour)		
P.S.	9:15 A.M.	9:35 A.M.	24.0	0.0	24.0	0.33	>20.0		
R-1	9:35 A.M.	9:55 A.M.	24.0	0.0	24.0	0.33	>20.0		
R-2	9:55 A.M.	10:15 A.M.	24.0	0.0	24.0	0.33	>20.0		
						F	ield <i>i</i> > 20.0 iph		

W A S	HITES s o c i a t	TONE es.inc.		INFILTRATION TEST						
Client:	The Ferber C	company, Inc.		т	est Hole No.:	SPP-2				
Project:	Wawa Food I	Market & Rest	aurant Site		Date:	11/26/2018				
Location:	Blackwood (V	Vashington Tv	vp), NJ		Weather:	Cloudy, 48° F				
File No.	GS1815987.0	000		Fi	eld Engineer:	M. Hengler				
Surf. Elev.	NS			Test Dep	oth Ft. Elev.:	4.00 NS				
Reading	Ti	me	Water Lev (inc	el Reading hes)	Water	Time Interval	Rate of Flow			
No.	Start	Finish	Start	Finish	(Inches)	(Hours)	(Inches/Hour)			
P.S.	10:15 A.M.	10:35 A.M.	24.0	0.0	24.0	0.33	>20.0			
R-1	10:35 A.M.	10:55 A.M.	24.0	0.0	24.0	0.33	>20.0			
R-2	10:55 A.M.	11:15 A.M.	24.0	0.0	24.0	0.33	>20.0			
						F	ield <i>i</i> > 20.0 iph			

W AS	HITES s o c i a t	TONE es.inc.		INFILTRATION TEST						
Client:	The Ferber C	Company, Inc.		T	est Hole No.:	SPP-3				
Project:	Wawa Food I	Market & Rest	aurant Site		Date:	11/26/2018				
Location:	Blackwood (V	Washington Tv	vp), NJ		Weather:	Cloudy, 48° F				
File No.	GS1815987.0	000		Fi	eld Engineer:	M. Hengler				
Surf. Elev.	NS			Test Dep	oth Ft. Elev.:	6.00 NS				
Reading	Tii	me	Water Lev (inc	el Reading hes)	Water	Time Interval	Rate of Flow			
No.	Start	Finish	Start	Finish	(Inches)	(Hours)	(Inches/Hour)			
P.S.	10:15 A.M.	10:35 A.M.	24.0	0.0	24.0	0.33	>20.0			
R-1	10:35 A.M.	10:55 A.M.	24.0	0.0	24.0	0.33	>20.0			
R-2	10:55 A.M.	11:15 A.M.	24.0	0.0	24.0	0.33	>20.0			
						F	ield <i>i</i> > 20.0 iph			

W AS	HITES sociat	TONE es, inc.		INFILTRATION TEST						
Client:	The Ferber C	Company, Inc.		<u>.</u> т	Fest Hole No.:	SPP-4				
Project:	Wawa Food I	Market & Rest	aurant Site		Date:	11/26/2018				
Location:	Blackwood (V	Washington Tv	vp), NJ		Weather:	Cloudy, 48° F				
File No.	GS1815987.0	000		Fi	eld Engineer:	M. Hengler				
Surf. Elev.	NS			Test Dep	oth Ft. Elev.:	4.00 NS				
Reading	Tii	me	Water Lev (inc	el Reading hes)	Water	Time Interval	Rate of Flow			
No.	Start	Finish	Start	Finish	(Inches)	(Hours)	(Inches/Hour)			
P.S.	10:50 A.M.	11:10 A.M.	24.0	0.0	24.0	0.33	>20.0			
R-1	11:10 A.M.	11:30 A.M.	24.0	0.0	24.0	0.33	>20.0			
R-2	11:30 A.M.	11:50 A.M.	24.0	0.0	24.0	0.33	>20.0			
						F	ield <i>i</i> > 20.0 iph			

W AS	HITES s o c i a t	TONE es.inc.		INFILTRATION TEST					
Client:	The Ferber C	Company, Inc.		T	est Hole No.:	SPP-5			
Project:	Wawa Food I	Market & Rest	aurant Site		Date:	11/26/2018			
Location:	Blackwood (V	Washington Tv	wp), NJ		Weather:	Cloudy, 48° F			
File No.	GS1815987.0	000		Fi	eld Engineer:	M. Hengler			
Surf. Elev.	NS			Test Dep	oth Ft. Elev.:	3.00 NS			
Reading	Ti	me	Water Leve (inc	el Reading hes)	Water	Time Interval	Rate of Flow		
No.	Start	Finish	Start	Finish	(Inches)	(Hours)	(Inches/Hour)		
P.S.	12:10 P.M.	12:30 P.M.	24.0	0.0	24.0	0.33	>20.0		
R-1	12:30 P.M.	12:50 P.M.	24.0	0.0	24.0	0.33	>20.0		
R-2	12:50 P.M.	1:10 P.M.	24.0	0.0	24.0	0.33	>20.0		
						F	ield <i>i</i> > 20.0 iph		

W	HITES s s o c i a t	TONE es.inc.		INFILTRATION TEST						
Client:	The Ferber C	company, Inc.		T	est Hole No.:	SPP-6				
Project:	Wawa Food I	Market & Rest	aurant Site		Date:	11/26/2018				
Location:	Blackwood (V	Vashington Tv	wp), NJ		Weather:	Cloudy, 48° F				
File No.	GS1815987.0	000		Fi	eld Engineer:	M. Hengler				
Surf. Elev.	NS			Test Dep	oth Ft. Elev.:	4.00 NS				
Reading	Ti	me	Water Lev (inc	el Reading hes)	Water	Time Interval	Rate of Flow			
No.	Start	Finish	Start	Finish	(Inches)	(Hours)	(Inches/Hour)			
P.S.	1:10 P.M.	1:30 P.M.	24.0	0.0	24.0	0.33	>20.0			
R-1	1:30 P.M.	1:50 P.M.	24.0	0.0	24.0	0.33	>20.0			
R-2	1:50 P.M.	2:10 P.M.	24.0	0.0	24.0	0.33	>20.0			
						F	ield <i>i</i> > 20.0 iph			

W A S	HITES sociat	TONE es, inc.			INFIL	FRATIO	N TEST
Client:	The Ferber C	company, Inc.		T	est Hole No.:	SSPP-1	
Project:	Proposed Wawa	I Food Market & I	Fuel Station	-	Date:	6/30/2020	
Location:	Blackwood, C	Gloucester Co	unty, NJ		Weather:	Clear	
File No.	GS1815987.0	000		Fi	eld Engineer:	R. Lombreglia	
Surf. Elev.	N/S			Test Dep	Test Depth Ft. Elev.:		N/S
Reading	Tii	me	Water Lev (inc	el Reading hes)	Water Level Fall	Time Interval	Rate of Flow
No.	Start	Finish	Start	Finish	(Inches)	(Hours)	(Inches/Hour)
PS	8:51 A.M.	8:53 A.M.	12.0	0.0	12.0	0.375	> 20.0
1	8: 54 A.M.	8:55 A.M.	12.0	2.0	10.0	0.014	> 20.0
2	8:55 A.M.	8:56 A.M.	12.0	2.0	10.0	0.014	> 20.0
3	8:56 A.M.	8:57 A.M.	12.0	2.0	10.0	0.014	> 20.0
Field <i>i</i> > 20.0 iph							

W A S	HITES 5 0 C I A T	TONE es, inc.			INFIL	FRATIO	N TEST
Client:	The Ferber C	company, Inc.		т	est Hole No.:	SSPP-2	
Project:	Proposed Wawa	I Food Market & F	Fuel Station	_	Date:	6/30/2020	
Location:	Blackwood, C	Gloucester Co	unty, NJ	_	Weather:	Clear	
File No.	GS1815987.0	000		Fi	eld Engineer:	R. Lombreglia	
Surf. Elev.	N/S			Test Dep	Test Depth Ft. Elev.:		N/S
Reading	Tii	me	Water Lev (inc	el Reading hes)	Water	Time Interval	Rate of Flow
No.	Start	Finish	Start	Finish	(Inches)	(Hours)	(Inches/Hour)
PS	9:32 A.M.	9:32 A.M.	12.0	0.0	12.0	0.01	> 20.0
1	9:32 A.M.	9:33 A.M.	12.0	2.0	10.0	0.005	> 20.0
2	9:33 A.M.	9:34 A.M.	12.0	2.0	10.0	0.005	> 20.0
3	9:34 A.M.	9:35 A.M.	12.0	2.0	10.0	0.005	> 20.0
						F	ield <i>i ></i> 20.0 iph

W A S	HITES sociat	TONE es, inc.			INFIL	FRATIO	N TEST
Client:	The Ferber C	company, Inc.		т	est Hole No.:	SSPP-3	
Project:	Proposed Wawa	I Food Market & F	Fuel Station	_	Date:	6/30/2020	
Location:	Blackwood, C	Gloucester Co	unty, NJ	<u>.</u>	Weather:	Clear	
File No.	GS1815987.0	000		Fi	eld Engineer:	R. Lombreglia	
Surf. Elev.	N/S			Test Dep	oth Ft. Elev.:	4.00	N/S
Reading	Tii	me	Water Lev (inc	el Reading hes)	Water	Time Interval	Rate of Flow
No.	Start	Finish	Start	Finish	(Inches)	(Hours)	(Inches/Hour)
PS	10:20 A.M.	10:20 A.M.	12.0	0.0	12.0	0.008	> 20.0
1	10:21 A.M.	10:22 A.M.	12.0	2.0	10.0	0.003	> 20.0
2	10:22 A.M.	10:22 A.M.	12.0	2.0	10.0	0.003	> 20.0
3	10:23 A.M.	10:23 A.M.	12.0	2.0	10.0	0.003	> 20.0
						F	ield <i>i</i> > 20.0 iph

W A S	HITES sociat	TONE es, inc.			INFIL	FRATIO	N TEST
Client:	The Ferber C	company, Inc.		т	est Hole No.:	SSPP-4	
Project:	Proposed Wawa	ı Food Market & F	Fuel Station	_	Date:	6/30/2020	
Location:	Blackwood, C	Gloucester Co	unty, NJ	<u>.</u>	Weather:	Clear	
File No.	GS1815987.0	000		Fi	eld Engineer:	R. Lombreglia	
Surf. Elev.	N/S			Test Dep	oth Ft. Elev.:	4.00	N/S
Poading	Tii	me	Water Lev (inc	el Reading hes)	Water	Timo Intorval	Pato of Flow
No.	Start	Finish	Start	Finish	(Inches)	(Hours)	(Inches/Hour)
PS	11:02 A.M.	11:02 A.M.	12.0	0.0	12.0	0.005	> 20.0
1	11:03 A.M.	11:03 A.M.	12.0	2.0	10.0	0.002	> 20.0
2	11:03 A.M.	11:03 A.M.	12.0	2.0	10.0	0.002	> 20.0
3	11:04 A.M.	11:04 A.M.	12.0	2.0	10.0	0.002	> 20.0
						F	ield <i>i</i> > 20.0 iph

W A S	HITES sociat	TONE es, inc.			INFIL	FRATIO	N TEST
Client:	The Ferber C	Company, Inc.		т	est Hole No.:	SSPP-5	
Project:	Proposed Wawa	a Food Market & F	Fuel Station		Date:	6/30/2020	
Location:	Blackwood, C	Gloucester Co	unty, NJ		Weather:	Clear	
File No.	GS1815987.0	000		Fi	eld Engineer:	R. Lombreglia	
Surf. Elev.	N/S			Test Dep	oth Ft. Elev.:	4.00	N/S
Poading	Ti	me	Water Lev (inc	el Reading hes)	Water	Timo Intorval	Pato of Flow
No.	Start	Finish	Start	Finish	(Inches)	(Hours)	(Inches/Hour)
PS	11:41 A.M.	11:42 A.M.	12.0	0.0	12.0	0.014	> 20.0
1	11:43 A.M.	11:43 A.M.	12.0	2.0	10.0	0.005	> 20.0
2	11:44 A.M.	11:44 A.M.	12.0	2.0	10.0	0.005	> 20.0
3	11:45 A.M.	11:45 A.M.	12.0	2.0	10.0	0.005	> 20.0
						F	ield <i>i</i> > 20.0 iph

APPENDIX C Supplemental Information (USCS, Terms and Symbols)

UNIFIED SOIL CLASSIFICATION SYSTEM

	MAJOR DIVISIONS		LETTER SYMBOL	-	TYPICAL DESCRIPTIONS
	GRAVEL AND	CLEAN GRAVELS	GW	WELL- MIXTU	GRADED GRAVELS, GRAVEL-SAND RES, LITTLE OR NO FINES
	GRAVELLY SOILS	(LITTLE OR NO FINES)	GP	POOR SAND	LY-GRADED GRAVELS, GRAVEL- MIXTURES, LITTLE OR NO FINES
COARSE GRAINED SOILS	MORE THAN 50% OF	GRAVELS WITH FINES	GM	SILTY MIXTU	GRAVELS, GRAVEL-SAND-SILT RES
	RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)	GC	CLAYE MIXTU	EY GRAVELS, GRAVEL-SAND-CLAY RES
	SAND AND SANDY	CLEAN SAND (LITTLE OR NO	SW	WELL- LITTLE	GRADED SANDS, GRAVELLY SANDS, E OR NO FINES
	SOILS	FINES)	SP	POOR SANDS	LY-GRADED SANDS, GRAVELLY S, LITTLE OR NO FINES
MORE THAN	MORE THAN 50% OF	SANDS WITH	SM	SILTY	SANDS, SAND-SILT MIXTURES
50% OF MATERIAL IS LARGER THAN NO. 200 SIEVE SIZE	6 OF COARSE FRACTION TERIAL IS <u>RGER</u> THAN 200 SIEVE E		SC	CLAYE	EY SANDS, SAND-CLAY MIXTURES
FINE	SILTS		ML	INORG ROCK SANDS PLAST	GANIC SILTS AND VERY FINE SANDS, FLOUR, SILTY OR CLAYEY FINE S OR CLAYEY SILTS WITH SLIGHT ICITY
GRAINED SOILS	AND CLAYS	<u>LESS</u> THAN 50	CL	INORG PLAST CLAYS	SANIC CLAYS OF LOW TO MEDIUM TCITY, GRAVELLY CLAYS, SANDY S, SILTY CLAYS, LEAN CLAYS
			OL	ORGA CLAYS	NIC SILTS AND ORGANIC SILTY S OF LOW PLASTICITY
MORE THAN 50% OF	0.11 70		MH	INORG DIATO SOILS	SANIC SILTS, MICACEOUS OR MACEOUS FINE SAND OR SILTY
<u>SMALLER</u> THAN NO. 200 SIEVE	AND CLAYS	GREATER THAN 50	СН	INORG FAT C	GANIC CLAYS OF HIGH PLASTICITY, LAYS
SIZE			ОН	ORGA PLAST	NIC CLAYS OF MEDIUM TO HIGH
ŀ	HIGHLY ORGANIC SOILS		PT	PEAT, ORGA	HUMUS, SWAMP SOILS WITH HIGH NIC CONTENTS

SOIL CLASSIFICATION CHART

NOTE: DUAL SYMBOLS ARE USED TO INDICATE BORDERLINE SOIL CLASSIFICATIONS FOR SAMPLES WITH 5% TO 12% FINES

GRADATION*

COMPACTNESS* Sand and/or Gravel

% FINER BY WEIGHT

 nd/or Gravel RELATIVE

DENSITY

10%	LOOSE	0% TO	40%
20%	MEDIUM DENSE	40% TO	70%
35%	DENSE	70% TO	90%
50%	VERY DENSE	. 90% TO ′	100%

CONSISTENCY* Clay and/or Silt

RANGE OF SHEARING STRENGTH IN POUNDS PER SQUARE FOOT

* VALUES ARE FROM LABORATORY OR FIELD TEST DATA, WHERE APPLICABLE. WHEN NO TESTING WAS PERFORMED, VALUES ARE ESTIMATED.

L:\Geotechnical Forms and References\Reports\USCSTRMSSYM NJ.docx

		Other Office L	ocations:	
CHALFONT, PA	SOUTHBOROUGH, MA	ROCKY HILL, CT	WALL, NJ	
215.712.2700	508.485.0755	860.726.7889	732.592-2101	

STERLING, VA 703.464.5858

GEOTECHNICAL TERMS AND SYMBOLS

SAMPLE IDENTIFICATION

The Unified Soil Classification System is used to identify the soil unless otherwise noted.

SOIL PROPERTY SYMBOLS

- N: Standard Penetration Value: Blows per ft. of a 140 lb. hammer falling 30" on a 2" O.D. split-spoon.
- Qu: Unconfined compressive strength, TSF.
- Qp: Penetrometer value, unconfined compressive strength, TSF.
- Mc: Moisture content, %.
- LL: Liquid limit, %.
- PI: Plasticity index, %.
- δd: Natural dry density, PCF.
- •: Apparent groundwater level at time noted after completion of boring.

DRILLING AND SAMPLING SYMBOLS

- NE: Not Encountered (Groundwater was not encountered).
- SS: Split-Spoon 1 ³/₈" I.D., 2" O.D., except where noted.
- ST: Shelby Tube 3" O.D., except where noted.
- AU: Auger Sample.
- OB: Diamond Bit.
- CB: Carbide Bit
- WS: Washed Sample.

RELATIVE DENSITY AND CONSISTENCY CLASSIFICATION

<u>Term (Non-Co</u>	<u>ohesive Soils)</u>		Standard Pe	enetratio	on Resistance
Very Loose Loose Medium Dense Dense Very Dense	;			0-4 4-1 10-3 30-3 Over	4 0 30 50 · 50
<u>Term (Cohesi</u>	<u>ve Soils)</u>	<u>Qu (TSF)</u>			
Very Soft Soft Firm (Medium Stiff Very Stiff Hard)	0 - 0.25 0.25 - 0.50 0.50 - 1.00 1.00 - 2.00 2.00 - 4.00 4.00+			
PARTICLE S	IZE				
Boulders Cobbles Gravel	8 in.+ 8 in3 in. 3 in5mm	Coarse Sand Medium Sand Fine Sand	5mm-0.6mm 0.6mm-0.2mm 0.2mm-0.074mm	Silt Clay	0.074mm-0.005mm -0.005mm

L:\Geotechnical Forms and References\Reports\USCSTRMSSYM NJ.docx

Other Office Locations:							
CHALFONT, PA 215.712.2700	Southborough, MA	ROCKY HILL, CT	WALL, NJ	Sterling, VA	Evergreen, CO		
	508.485.0755	860.726.7889	732.592-2101	703.464.5858	303.670.6905		