PHASE II ENVIRONMENTAL SITE ASSESSMENT

PROPOSED SONIC RESTAURANT 2301 EAST MARKLAND AVENUE KOKOMO, INDIANA 46901 A&W PROJECT NO.: 16IN0007

PREPARED FOR: GEAUX SONIC LLC KOKOMO, INDIANA 46901

PREPARED BY: ALT & WITZIG CONSULTING SERVICES

JANUARY 27, 2016

January 27, 2016

Geaux Sonic LLC 1637 Wynterbrooke Dr Kokomo, Indiana 46901 Attention: Mr. Drew Keriwala

> RE: Phase II Environmental Site Assessment Proposed Sonic Restaurant 2301 East Markland Avenue Kokomo, Indiana 46901 A&W Project No.: 16IN0007

Dear Mr. Keriwala:

In compliance with your request, Alt & Witzig Consulting Services has completed a Phase II Environmental Site Assessment for the above mentioned Site. The Statement of Objectives, Scope of Work, and results of our investigation are presented in the following report. It is our pleasure to transmit one (1) electronic .pdf copy of this final version of the report.

If you have questions or comments regarding our investigation or report, please do not hesitate to contact us.

Sincerely, ALT & WITZIG CONSULTING SERVICES ENVIRONMENTAL DIVISION

David Herring, CHMM Project Manager

John C. Flannelly Senior Project Manager

TABLE OF CONTENTS

EXECUTIVE SUMMARY	I
Findings and Conclusions Recommendations	i i
1.0 INTRODUCTION	.1
 1.1 Purpose 1.2 Statement of Objectives 1.3 Assessment Exclusions 1.4 Scope of Work 1.5 Incorporations by Reference 1.6 Report Limitations and Exceptions 1.7 Report Reliance 	.1 .1 .1 .1 .2 .2
2.0 BACKGROUND INFORMATION	3
 2.1 Site Location 2.2 Site Description 2.3 Regional Setting 2.3.1 Topography 2.3.2 Soils 2.4 Summary of Site History and Use 2.5 Summary of Adjacent Property History and Use 2.6 Summary of Previous Reports 	.3 .3 .3 .3 .3 .3 .3 .3 .3 .4
3.0 CONCEPTUAL SITE MODEL (CSM)	5
 3.1 CSM Introduction 3.2 Target Analytes	.5 .5 5 6 6
4.0 Work Performed	7
 4.1 Boring Locations	.7 .7 .8 .8 .8 .8
5.0 Investigation Results	10

8.0 REFERENCES	13
7.0 WARRANTY	12
6.3 Recommendations	11
6.2 Investigation Analysis and Conclusions	
6.1 Re-Statement of Objectives	
6.0 INTERPRETATIONS AND CONCLUSIONS	11
5.6 Validation of the Conceptual Site Model	10
5.5 Sampling and Analysis Plan Deviations	10
5.4 Laboratory Results for Groundwater Samples	
5.3 Laboratory Results for Soil Samples	10
5.2 Site-Specific Hydrogeologic Results	10
5.1 Site-Specific Geologic Results	10

APPENDIX A

Figures

APPENDIX B

Sampling and Analysis Plan

APPENDIX C

Boring Logs

APPENDIX D

Laboratory Analytical Results Tables

APPENDIX E

Laboratory Certificate of Analyses and Sampling Chain of Custody

EXECUTIVE SUMMARY

Alt & Witzig Consulting Services (A&W) has performed a Phase II Environmental Site Assessment (ESA) on an out-lot located at 2301 East Markland Avenue in Kokomo, Indiana 46901 (Site) in conformance with the scope and limitations of ASTM Practice E 1903-11 and for the following objective(s):

This assessment addresses the following recognized environmental conditions (RECs) and potential vapor encroachment condition (VEC) identified during the Phase I ESA completed by A&W on November 17, 2015 (A&W Project No.: 15IN0782):

REC/VEC:

§ *The presence of a west adjoining filling station is considered a REC and a potential VEC to the Site.*

An A&W representative performed this Phase II ESA on January 11, 2016. This investigation was performed for Geaux Sonic LLC. Authorization to perform this investigation was in the form of an A&W proposal accepted by Mr. Drew Keriwala of Geaux Sonic LLC.

Findings and Conclusions

Two (2) soil borings (B-1 and B-2) were advanced on the Site in order to determine if the current and historical use of underground storage tanks (USTs) at the west adjacent fuel station have environmentally impacted the soil and/or groundwater on-Site. Two (2) soil and two (2) groundwater samples were collected and analyzed for the following potential contaminants: Volatile Organic Compounds (VOCs) and Polynuclear Aromatic Hydrocarbons (PAHs).

Analytical results indicated soil located along the west Site boundary adjacent to the off-Site fuel station identified concentrations of PAHs above the laboratory reporting limits, but below the Indiana Department of Environmental Management (IDEM) Remediation Closure Guide (RCG) Soil Migration to Groundwater (MTG), Residential Direct Contact (RDC) and Commercial Direct Contact (CDC) Screening Levels at depths ranging from approximately nine (9) to 12 feet below ground surface (bgs).

There were no groundwater concentrations identified above the laboratory reporting limits or their respective IDEM RCG Residential Tap, Residential Vapor, and/or Commercial Vapor Screening Levels.

Recommendations

Based on the results of this investigation, additional investigations do not appear warranted.

1.0 INTRODUCTION

1.1 Purpose

The purpose of Alt & Witzig Consulting Services (A&W) conducting a Phase II Environmental Site Assessment (ESA) on an out-lot located at 2301 East Markland Avenue, Kokomo, Indiana 46901 (Site) is to evaluate the recognized environmental conditions (RECs) and potential vapor encroachment conditions (VECs) identified in the Phase I ESA process for the purpose of providing sufficient information regarding the nature of potential soil and/or groundwater contamination to assist in making informed business decisions about the property; and where applicable, providing the level of knowledge necessary to establish limitations of or defenses to potential Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) liability via Landowner Liability Protections (LLPs), such as the *bona fide prospective purchaser, contiguous property owner*, and *innocent landowner* LLPs.

Establishing LLPs may not be a realistic objective in some instances. Accordingly, the extent of this investigation is based on the business objectives of Geaux Sonic LLC as well as the degree of uncertainty acceptable to Geaux Sonic LLC.

<u>1.2 Statement of Objectives</u>

This assessment addresses the following REC and VEC identified during the Phase I ESA completed by A&W on November 17, 2015 (A&W Project No.: 15IN0782):

REC/VEC:

§ *The presence of a west adjoining filling station is considered a REC and a potential VEC to the Site.*

<u>1.3 Assessment Exclusions</u>

The Phase I ESA did not indicate the presence of other RECs or historical RECs identified with the Site. This Phase II ESA is therefore limited to the REC identified in Section 1.2 and does not contain specific assessment exclusions.

1.4 Scope of Work

During the Phase II ESA, two (2) borings (B-1 and B-2) were advanced on-Site. Two (2) soil samples and two (2) groundwater samples were collected and analyzed for likely potential contaminants.

<u>1.5 Incorporations by Reference</u>

The investigation was conducted in general accordance with the American Society for Testing and Materials (ASTM) "Standard Practice for Environmental Site Assessments: Phase II Environmental Site Assessment Process E1903-11 (2011)" (Practice) and contains all of the limitations inherent therein.

This investigation was performed for Geaux Sonic LLC. The proposed statement of objectives and scope of work were outlined in the form of A&W Proposal Number 1512E012 duly authorized by Mr. Drew Keriwala of Geaux Sonic LLC. The Scope of Work proposed to address the objectives of

the Phase II ESA does not include significant schedule, budget, or cost limitations that would compromise A&W's ability to conduct the Phase II ESA in accordance with the Practice.

This investigation was performed in the State of Indiana. Regulatory requirements applicable to the investigation are outlined within the 2012 Indiana Department of Environmental Management (IDEM) *Remediation Closure Guide/Remediation Program Guide* (RCG/RPG), with updates.

<u>1.6 Report Limitations and Exceptions</u>

Soil and groundwater sampling and laboratory analysis focused on potential contaminants outlined in our proposal and were not exhaustive. Professional judgments expressed herein are based on facts currently available within the limits of the existing data, scope of work, budget and schedule. To the extent that the client desires more definitive conclusions than are warranted by the currently available facts, it is A&W's specific intent that the conclusions and recommendations stated herein are provided based on known facts derived from the current investigation. Professional judgment and interpretation are inherent in the completion of any ESA. We make no warranties, express or implied, including, without limitation, warranties as to merchantability or fitness for a particular purpose. Additionally, the information provided to Geaux Sonic LLC in this report is not to be construed as legal advice.

This Phase II ESA does not address the evaluation of business environmental risks in light of data collected through the ESA process. Such evaluation is a function of site- and transaction-specific variables, and of the user's objectives and risk tolerance. The user will evaluate legal, business and environmental risks in light of known data relating to the particular site and transaction, and in consultation with legal and business advisors as well as the Phase II Assessor (A&W).

1.7 Report Reliance

This report is solely for the use of Geaux Sonic LLC and any reliance of this report by third parties shall be at such party's sole risk and may not contain sufficient information for purposes of other parties for other uses. This report shall only be presented in full and may not be used to support any other objectives than those set out in the scope of work, except where written approval and consent are provided by Geaux Sonic LLC and A&W.

2.0 BACKGROUND INFORMATION

2.1 Site Location

The Site is located in the City of Kokomo in Howard County, Indiana at 2301 East Markland Avenue. The Site is further located on the U.S.G.S. 7.5-Minute Series Topographic map of Kokomo East, Indiana (**Figure 1**, **Appendix A**) in the northwest quarter of Section 5, Township 23 North, Range 4 East. The layout of the Site and surrounding properties are depicted on a Site Vicinity Map (**Figure 2**, **Appendix A**).

2.2 Site Description

The Site includes approximately 0.88-acre of unimproved land. The Site sloped slightly toward the north, in the direction of East Markland Road. No evidence of former Site structures was observed during the Site reconnaissance. The Site consists of an unimproved outlot on the northern portion of a Meijer Supermarket shopping center.

2.3 Regional Setting

2.3.1 Topography

The surface of the immediate Site was relatively flat, with a relief of less than five (5) feet. The approximate mean sea level (msl) elevation of the Site is 816 feet. Drainage on the Site is via ground surface infiltration. Based on topography, the groundwater flow is likely to the north in the direction of Wildcat Creek.

2.3.2 Soils

Topsoil on the Site consists primarily of Crosby-Brookston soil association. Crosby-Brookston soils are described by the U.S. Department of Agriculture Soil Conservation Service as being deep, somewhat poorly drained and very poorly drained, medium-textured and moderately fine textured, nearly level and gently sloping soils; on uplands.

2.4 Summary of Site History and Use

According to the Phase I ESA, from at least 1938 through 1964 the Site appeared to be developed as residential property. By 1974 the Site appeared to consist of unimproved land, possibly agricultural in nature. From 1998 through the present the Site has consisted of grass-covered, unimproved land. At the time of the Site reconnaissance the Site consisted of approximately 0.88-acre of unimproved land. Groundcover on the Site consisted of landscaped grass.

2.5 Summary of Adjacent Property History and Use

The adjoining properties consist primarily of commercial/retail properties.

- North: North of the Site is East Markland Avenue. Beyond this are an Advance Auto Parts and Goodwill Store (2250 & 2258 East Markland Avenue).
- South: South of the Site is large asphalt parking lot, followed by an associated Meijer Supermarket (2301 East Markland Avenue).

- **East**: East of the Site is a Walgreens Pharmacy (*2345 East Markland Avenue*). Beyond that is South Goyer Road.
- West: West of the Site is an access drive, followed by Meijer filling station (2297 East Markland Avenue). Beyond that is an HH Gregg Appliance Store (2021 East Markland Avenue).

The Meijer filling station was identified as a REC/VEC to the Site in the Phase I report.

2.6 Summary of Previous Reports

A Phase I ESA was performed by A&W in November 2015 and identified an adjacent Meijer filling station as a REC/VEC. Additional reports or investigations were not provided for additional historical review in connection with the Site.

3.0 CONCEPTUAL SITE MODEL (CSM)

3.1 CSM Introduction

The conceptual Site model consists of descriptions of the likely environmental conditions of the property relative to the presence or likely presence of target analytes in environmental media. It includes discussion of the potential sources of contamination, likely contaminants based on Site use, and the fate and transport mechanisms of potential contaminants through the subsurface.

3.2 Target Analytes

Based on the use of petroleum USTs, the target analytes associated with this Phase II ESA focused on likely potential contaminants as detailed in table below. Specific analytes of each target group are itemized individually in the analytical summary tables located in the appendices section of this report.

Target Analytes for Phase II ESA									
Chemical Name	Abbreviation	Methodology							
Target Analytes									
Volatile Organic Compounds	VOCs	US EPA SW-846 Method 8260							
Polynuclear Aromatic Hydrocarbons	DAUs	US EPA SW-846 Method 8270							
Folynuclear Afomatic Hydrocarbons	ГАПЯ	Selective Ion Monitoring (SIM)							

3.2.1 Target Analyte Transformation

The primary target analytes are petroleum-based compounds, which can naturally attenuate into non-toxic byproducts. Therefore, the creation of toxic secondary target analytes (i.e. breakdown products) is unlikely.

3.2.2 Potential Release Source(s) and Entry Mechanism(s)

If a release were to have occurred from the UST system, petroleum contaminants would have originally been present in a liquid phase, which may have adsorbed to native soils adjacent to the UST system. Impacts from a UST system are possible due to slow, sustained release through holes in the tank structure or associated piping. Therefore, suspected impacts are likely in proximity to the UST system.

3.2.3 Target Analyte Behavior, Fate, and Transport Characteristics

Target analytes generally persist, and are commonly at their highest concentration, near the point of entry into environmental media. Migration of a release of target analytes generally results in a three (3)-dimensional expansion of the zone impacted by the target analytes.

Since the likely point of release would be in proximity to the UST system, and estimated regional groundwater direction is postulated to traverse north towards Wildcat Creek, a petroleum contamination plume would likely originate at the UST system and migrate north toward the Site boundary. Based on the nature of the specific gravity of the petroleum contaminant, the impacts would likely be present at the top of the water column and within the smear zone created by seasonal fluctuations of the water table. Additionally, soils within the vadose zone immediately adjacent to the UST system may be impacted from a release.

Depending on concentrations of target analytes, their relative volatility, and Site-specific preferential pathways (i.e. subsurface utilities), vapors emanating from a potential contaminant plume may migrate to environmental receptors.

3.2.4 Target Analyte Migration Pathways

The primary migration pathway for a release from the UST system would be transport via the underlying groundwater table in the presumed north direction of groundwater flow.

3.3 Sampling and Analysis Plan

A Site-specific sampling and analysis plan (SAP) was created based on the hypotheses derived during the creation of the conceptual Site model, following generally accepted Quality Assurance/Quality Control (QA/QC) protocols for sample collection, preservation, and analysis. The SAP is included in **Appendix B**.

During the development of the SAP, available information did not warrant direct evaluation of vapor intrusion pathways. Therefore, vapor sampling was not performed in conjunction with this ESA.

3.4 Additional Research and/or Interviews

No additional research or interviews were conducted as part of this assessment, outside of a review of the available documentation presented in the Phase I ESA, as summarized in Section 2.6.

4.0 WORK PERFORMED

4.1 Boring Locations

On January 11, 2016, two (2) soil borings (B-1 and B-2) were advanced along the west Site boundary adjacent to the off-Site Meijer filling station. Soil boring locations are illustrated on **Figure 3**, **Appendix A**.

4.2 Soil Sampling

This section details the methodology used in collecting representative soil samples, a general overview of soil lithology identified within advanced borings and laboratory analyses of soil samples.

4.2.1 Soil Sampling Methodology

The soil borings were advanced using a truck-mounted Geoprobe[®] 5410 unit with direct push technology to depths of approximately 16 and 20 feet below ground surface (bgs). Soil samples were continuously collected from a four (4)-foot Geoprobe[®] dual tube sampling device with an inner acetate liner.

Soil samples from the inner liner were field classified in two (2) foot sections and inspected for observable staining and noticeable odors. Once classified, the soil samples were collected and split into two (2) aliquots. One (1) aliquot was collected in a plastic zip-lock bag. The other aliquot was collected utilizing grab and US EPA 5035A sampling methodology and placed in one (1) unpreserved four (4)-ounce glass jars with Teflon-lined lids for non-volatile analysis and in three (3) 40-milliliter (mL) glass vials with Teflon-lined lids preserved with methanol or deionized water for volatile analysis.

New nitrile gloves were used for each sample collection to prevent cross-contamination. The aliquots collected for potential laboratory analysis were labeled and placed on ice in a cooler.

Each aliquot collected in the zip-lock bags were screened for VOCs using a Mini Rae 2000 photoionization detector (PID) equipped with a 10.2 eV probe. The PID measures the concentration of total photoionizable vapors (TPVs) in the air (headspace) surrounding the sample. Accordingly, the readings reported from the PID are in units relative to the calibration gas, rather than exact concentrations. The PID was calibrated to an isobutylene standard prior to Site operations.

The soil samples were allowed to equilibrate at the ambient temperature for a minimum of 10 minutes prior to screening procedures. Each individual aliquot was agitated for approximately 10 seconds to break soil clods and release vapors. The zip lock bag was opened and the PID probe tip carefully inserted into a small aperture in the bag. The highest instrument reading was immediately recorded. Headspace analysis results are reported on the boring logs located in **Appendix C**.

Since potential contamination (i.e. PID reading, staining, odor) was not encountered in

borings, the soil samples collected from the vadose zone were selected for laboratory analysis. The following soil samples were submitted to the laboratory for analysis:

Boring ID	Sample Depth (ft. bgs)	PID Reading (ppm)
B-1	10-12	0.0
B-2	9-11	0.0

4.2.2 Laboratory Analyses for Soil Samples

Two (2) soil samples collected along the west Site boundary were analyzed at Pace Analytical Services, Inc. in Indianapolis, Indiana for:

- VOCs using US EPA method SW846-8260; and,
- PAHs using US EPA method SW846-8270 SIM.

Table 1, Appendix D provides a sample collection and analysis summary. **Table 2, Appendix D** provides a summary of laboratory results for soils. The laboratory certificate of analysis and sampling chain of custody form are presented as **Appendix E**.

4.3 Groundwater Sampling

This section details the methodology used in collecting representative groundwater samples, an estimated depth to groundwater within advanced borings and the laboratory analyses of groundwater samples.

4.3.1 Groundwater Elevation

Initial depths to groundwater were estimated based on soil saturation at depths of 13 and 11 feet bgs in borings B-1 and B-2, respectively. Approximately 15 to 20 minutes after boring installation, the depth to water was measured using a 100-foot electronic water level probe consisting of a polyethylene tape with a ½ inch diameter stainless steel probe and an audible buzzer. Groundwater levels were measured at depths of 11 and 12 feet bgs in borings B-1 and B-2, respectively.

4.3.2 Groundwater Sampling Methodology

Groundwater samples B-1 and B-2 were collected from their respective on-Site soil borings for a total of two (2) groundwater samples.

In order to collect groundwater samples for groundwater quality analysis, temporary piezometers were installed in the borings with 10 feet of well screen positioned to intersect the groundwater table. The piezometers were constructed of one (1)-inch diameter, threaded, flush-joint Schedule 40 PVC 0.01-inch slot screens with bottom caps. Disposable plastic bailers were used to collect groundwater from each piezometer. New nitrile gloves were used for each sample collection to prevent cross-contamination. The temporary piezometer diagrams are located on the boring logs in **Appendix C**. The temporary piezometers were removed from each borehole following sample collection. Each borehole was then filled with bentonite chips to the ground surface.

The groundwater samples were placed in two (2) unpreserved 100-mL amber jars and three (3) 40-mL vials preserved with hydrochloric acid. The samples were then labeled and placed on ice in a cooler.

The following groundwater samples were submitted to the laboratory for analysis:

Boring ID	Screen Sample Depth (ft. bgs)
B-1	10-20
B-2	6-16

4.3.3 Laboratory Analyses for Groundwater Samples

Two (2) groundwater samples collected along the west Site boundary were analyzed at Pace Analytical Services, Inc. in Indianapolis, Indiana for:

- VOCs using US EPA method SW846-8260; and,
- PAHs using US EPA method SW846-8270 SIM.

Table 1, **Appendix D** provides a sample collection and analysis summary. **Table 3**, **Appendix D** provides a summary of laboratory results for groundwater. The laboratory certificate of analysis and sampling chain of custody form are presented as **Appendix E**.

5.0 INVESTIGATION RESULTS

5.1 Site-Specific Geologic Results

Soil borings B-1 and B-2 indicated silty clay loam to approximately 11 to 13 feet bgs underlain by sand and gravel to boring termination at 20 feet and 16 feet, respectively. Boring B-1 had a till layer at 15 feet bgs underlain by sand and gravel textured soils. Copies of the boring logs are provided in **Appendix C.**

5.2 Site-Specific Hydrogeologic Results

As described in Section 4.3.1, on-Site groundwater was measured at approximate depths of 11 and 12 feet bgs in borings B-1 and B-2 respectively. The piezometer screens were set to intercept the soil/groundwater interface as estimated by field observations.

5.3 Laboratory Results for Soil Samples

As summarized in **Table 2**, **Appendix D**, laboratory analysis of soil indicated the following:

• Various PAHs were detected above the laboratory reporting limit but below their respective IDEM RCG Residential Direct Contact (RDC), Commercial Direct Contact (CDC) and Soil Migration to Groundwater (MTG) Screening Levels in boring B-1.

As summarized in **Table 2**, **Appendix D**, laboratory analysis of soil indicated all other analyzed potential contaminants in each soil sample were identified below their respective laboratory reporting limits and IDEM RCG MTG, RDC and CDC Screening Levels.¹

5.4 Laboratory Results for Groundwater Samples

As summarized in **Table 3**, **Appendix D**, laboratory analysis of groundwater indicated all analyses were below their respective laboratory reporting limits and IDEM RCG Residential Tap Screening Level and Residential and Commercial Groundwater Vapor Exposure Screening Levels.

5.5 Sampling and Analysis Plan Deviations

There were no deviations from the SAP for this investigation. A copy of the SAP is provided in **Appendix B**.

5.6 Validation of the Conceptual Site Model

Soil characterization results, hydraulic information, and analytical results confirm that appropriate environmental media were sampled from optimal or other appropriate locations and were tested for the appropriate target analytes based on the historic Site use, in accordance with the SAP and as required to meet the objective of the assessment.

¹ Several analyzed compounds may not have an analytical method available with a detection limit or quantitation limit that will meet the screening level.

6.0 INTERPRETATIONS AND CONCLUSIONS

6.1 Re-Statement of Objectives

A&W has performed a Phase II ESA at the property at 2301 East Markland Avenue in Kokomo, Indiana 46901 in conformance with the scope and limitations of ASTM Practice E 1903-11 and for the following objectives: to determine if Site environmental media have been affected by the REC/VEC identified in the Phase I ESA.

6.2 Investigation Analysis and Conclusions

The subsurface lithology of the likely release area consisted of shallow clays underlain by moist to wet sand and gravel. Groundwater was present in two (2) borings in proximity to the likely release area at a depth of approximately 11 to 12 feet bgs. Based on the soil and groundwater analytical results from samples obtained in proximity to the adjacent filling station and the resultant lack of contaminant detections in the soil and groundwater, it is unlikely that the adjacent UST system has had a negative effect on Site environmental media.

Analytical results indicated soil located along the west Site boundary adjacent to the off-Site fuel station identified concentrations of PAHs above the laboratory reporting limits, but below the IDEM RCG, MTG, RDC and CDC Screening Levels at depths ranging from approximately nine (9) to 12 feet bgs.

There were no groundwater concentrations identified above the laboratory reporting limits or their respective IDEM RCG Residential Tap, Residential Vapor, and/or Commercial Vapor Screening Levels.

According to the IDEM RCG, groundwater analytical results are compared to applicable Vapor Intrusion (VI) Screening Levels, where applicable. Based on these results, VI Investigations are not warranted on the Site.

The Site and surrounding area is connected to municipal drinking water and sewer utilities, and groundwater was encountered at approximately 11 to 12 feet bgs in these borings. Therefore, the lines of evidence indicate there is limited exposure for direct human contact and thus, exposure routes are not complete. Based on the validation of the conceptual Site model, the appropriateness of the SAP, and the interpretations present within this report, the objectives of this Phase II ESA have been satisfied.

6.3 Recommendations

Based on the results of this investigation, additional investigations do not appear warranted.

7.0 WARRANTY

A&W warrants that the findings and conclusions contained herein were derived in accordance with the methodologies and protocol of standard industry practices for subsurface investigations. It should be noted that all environmental evaluations are inherently limited in the sense that conclusions are drawn and recommendations developed from information obtained from limited research and evaluations. Additionally, the passage of time may result in a change in the environmental characteristics at the Site and surrounding properties. This report does not warrant against future operations or conditions, nor does this warrant operations or conditions present of a type or at a location not investigated. This report is not a regulatory compliance audit and is not intended to satisfy the requirements of any federal, state or local real estate laws.

8.0 REFERENCES

Alt & Witzig Consulting Services, <u>Phase I Environmental Site Assessment: 2301 East Markland</u> <u>Avenue, Kokomo, Indiana</u>, A&W Project Number 15IN0782, November 17, 2015.

American Society of Testing and Materials (ASTM), <u>Practice E1903-11 – Standard Practice for</u> <u>Environmental Site Assessments: Phase II Environmental Site Assessment Process</u>, 2011.

Indiana Department of Environmental Management, <u>Remediation Closure Guide</u>, March 22, 2012, with updates.

Indiana Department of Environmental Management, <u>Remediation Program Guide</u>, February 2012.

Pace Analytical Services, <u>Laboratory Certificate of Analysis Number 50136269</u>: Proposed Sonic <u>16IN0007</u>, January 19, 2016.

APPENDIX A

Figures

FIGURE 1: SITE LOCATION MAP

FIGURE 2: SITE VICINITY MAP

APPENDIX B

Sampling and Analysis Plan

Goal:

Advance two(2) soil borings on-Site along the west property line adjacent to the gas station.

		Media		Depth		An	Sample Containers						
						Anarysis		Soil		Groundwater			
Sample ID	Location							4 og gloss	Tannagana	40-mL HCl	100 mL	250-mL	250-mL HNO ₃
		Soil	Groundwater	Soil Groundwater	Groundwater	Soil	Groundwater	jars	Kit	preserved	unpreserved	unpreserved	preserved
										glass vials	glass jars	plastic bottle	plastic bottle
B-1	West Property Line	t Property Line 1	1 1	Highest PID or	Interface	VOCs, PAHs	VOCs PAHs	1	1	3	2	_	_
D-1	west i toperty Ellie	1		Vadose zone			VOCS, I AIIS		1	5	2	-	-
вj	West Property Line	1	1	Highest PID or	Interface	VOCa DAHa	VOC- DAIL	1	1	3	2		
В-2	west Floperty Line	1	1	Vadose zone	interface	VOUS, PAHS	VOCS, FAIIS	1	1	5	2	-	-
Total:		2	2					2	2	6	4	0	0

<u>Scope and/or Additional Comments:</u> Collect one (1) soil and one (1) groundwater sample from each boring. Place on ice. Submit to Pace Analytical Services.

APPENDIX C

Boring Logs

Client: Geaux Sonic					Soni	с	Alt & Witzig File No: 16IN0007	Boring	g/Well:	B-1		
Proje	ct:		Pro	pose	ed Sor	nic Re	staurant	Well Construction Data				
Date	Starte	d:	1/11/2016	3	Date	Compl	leted: 1/11/2016	Screen: 3/4" 0.010 Slot P\/C		From: 1	0.0 To: 20.0	
Logge	ed By:	B.	Rutherfo	, ord	Chec	ked By	D. Herring	Pack: N/A		From: N	V/A To: N/A	
Drilling Co.: Driller: A&W Consulting Services P Rose					r:	P Rose	Seal: N/A		From: N	J/A To: N/A		
Method: Equipment:					ment:	Gooproba 5/10	Grout:		Erom: N			
Borin	g Dept	th:			Grour	nd Sur	face Elevation:	Inner Casing:			N/A TO. IN/A	
Initial ⊈	GW L	evel:	13.00		GW L ¥	evel:	11.00	Outer Casing/Stick Up:	<u> </u>	N/A		
_	۵.		10.00		_		11.00	I		1,7,7,7		
Depth	Sample	Sample Numbe	Blow Count	3ec.(%	DID (ppm)	Lith.	De	scription	Rema	arks	VVell Construction	
		1		70	0.0		Very Dark Brown (10 Y	'R 2/2) SILTY CLAY LOAM				
- 5-					0.0		Brownish Yellow (10 Y	'R 6/6) SILTY CLAY LOAM		- - 5—		
-	\bigwedge	2		70	0.0		Brown (10 YR 4/3) SANDY CLAY LOAM		-		
- 10— -		3		100	0.0	Brown (10 YR 4/3) SILTY CLAY LOAM Soil Sampl 10'-12'				- ,@ 10—		
- - 15-		4		100	0.0		Brown (10 YR 4/3) N	loist SAND and GRAVEL	¥ -	- - 15—		
-		5		80	0.0	+ + + + + + + + + + + + + + + + + + +	Grayish Brown (10 Y Trace of Sa	R 5/2) Clayey SILT with a and and Gravel		-		
- 20-	/				0.0	00000	Grayish Brown (10		- 			
							Boring Termi	nated at 20.0 feet				

Client: Geaux Sonic				Alt & Witzig F	ile No: 16IN0007	Borinę	g/Well:	B-2					
Projec	ct:		Pro	opose	ed Sor	nic Re	estaurant	Well Construction Data					
Date \$	Starte	d:	1/11/2016	3	Date	Comp	leted: 1/11/2016	Screen: 3/4	4" 0.010 Slot PVC		From:	6.0 To: 16.0	
Logge	ed By:	B.	Rutherfo	ord	Chec	ked By	/: D. Herring	Pack:	N/A		From:	N/A To: N/A	
Drilling Co.: Driller: A&W Consulting Services P. Rose				Seal:	N/A		From:	N/A To: N/A					
Metho	d:	Equipment:					Geoprobe 5410	Grout:	N/A		From	N/A To: N/A	
Borinę	g Dept	th:	16.0 feet		Grou	nd Sur	face Elevation:	Inner Casing:					
Initial ⊈	GW L	evel:	11.00		GW L ⊈	evel:	12.00	Outer Casing	/Stick Up:	·	N/A		
	e	e er		()								Well	
epth	ampl	ampl	Blow	ec.(%	⊡ G	ith.	De	scription		Rem	arks	Construction	
	s \	σz	Obuint	R	L S								
_	$\setminus /$				0.0	XX							
	$\left \right\rangle$	1				Ŵ	Brown (10 YR 4/3	3) SILTY CLA	AY LOAM				
-	Å			90		\overline{M}						1	
-	/				0.0	Ŵ						4	
	/					W							
	\setminus /					YXX.	Very Dark Brown (10 Y	R 2/2) SILT	Y CLAY LOAM				
5—	\setminus				0.0	XX					5-	-	
	V	2		80		44							
	\wedge					M							
-	$/ \setminus$				0.0	YXX.						1	
						XX						-	
	\setminus /					Ŵ.	Grayish Brown (1)) YR 5/2) CL	AY LOAM				
	\backslash / \vert				0.0	Ŵ				Soil Sample	e @	1	
10—	X	3		100		W/				9-11	10-	- 1	
					0.0				7	7			
	$/ \setminus$												
									_	-		1	
-	\setminus /				0.0		Grayish Brown (10	YR 5/2) Wet	SAND and				
	\vee	4		70		0.0							
	\land			70								1	
15—					0.0		Brown (10 YR 4/3) Wet SANDY I OAM				15 -		
	/ \												
							Boring Termi	nated at 16.0) teet				

APPENDIX D

Laboratory Analytical Results Tables

SAMPLE COLLECTION AND ANALYSIS SUMMARY PROPOSED SONIC RESTAURANT KOKOMO, INDIANA

Sample Identification	Sample Depth (feet bgs)	Matrix	Collection Date	Parameters	Analytical Method
B-1	10-12	Soil	1/11/2016	VOCs PAHs	US EPA SW846-8260 US EPA SW846-8270SIM
B-2	9-11	Soil	1/11/2016	VOCs PAHs	US EPA SW846-8260 US EPA SW846-8270SIM
B-1	10-20	Groundwater	1/11/2016	VOCs PAHs	US EPA SW846-8260 US EPA SW846-8270SIM
B-2	6-16	Groundwater	1/11/2016	VOCs PAHs	US EPA SW846-8260 US EPA SW846-8270SIM

Abbreviations & Notes

US EPA = United States Environmental Protection Agency VOCs = Volatile Organic Compounds PAHs = Polynuclear Aromatic Hydrocarbons SIM = Selective Ion Monitoring

SUMMARY OF SOIL ANALYTICAL DATA PROPOSED SONIC RESTAURANT KOKOMO, INDIANA

Sample ID (and Depth - ft.):	IDEM 2012 RCG RESIDENTIAL	IDEM 2012 RCG COMMERCIAL	IDEM 2012 RCG EXCAVATION DIRECT	IDEM 2012 RCG SOIL MIGRATION TO CROUNDWATED SL-	B-1 (10-12)	B-2 (9-11)
Sample Date:	(*)	(**)	(#)	GROUNDWATER SLS (^)	01/11/2016	01/11/2016
Parameters						
	FULL LIST VC	OCs (8260)				
Acetone (2-Propanone)	85,000	100,000	100,000	57	< 0.089	< 0.093
Acrolein	0.2	0.6	3.4	0.00017	<0.089 R	<0.093 R
Acrylonitrile	3.5	11	370	0.0023	<0.089 R	<0.093 R
Benzene	17	51	1,800	0.051	< 0.0045	< 0.0047
Bromobenzene	410	680	680	0.84	< 0.0045	< 0.0047
Bromochloromethane	210	630	3,500	0.41	< 0.0045	< 0.0047
Bromodichloromethane	4.1	13	930	0.43	< 0.0045	< 0.0047
Bromoform (tribromomethane)	940	2,900	34,000	0.42	< 0.0045	< 0.0047
Bromomethane (methyl bromide)	9.5	30	160	0.038	< 0.0045	< 0.0047
2-Butanone (MEK)	28,000	28,000	28,000	23	< 0.022	< 0.023
n-Butylbenzene	110	110	110	64	< 0.0045	< 0.0047
sec-Butylbenzene	150	150	150	120	< 0.0045	< 0.0047
tert-Butylbenzene	180	180	180	31	< 0.0045	< 0.0047
Carbon disulfide	740	740	740	4.8	< 0.0089	< 0.0093
Carbon Tetrachloride	9.1	29	460	0.039	< 0.0045	< 0.0047
Chlorobenzene	390	760	760	1.4	< 0.0045	< 0.0047
Chloroethane	NE	NE	NE	NE	< 0.0045	< 0.0047
Chloroform	4.5	14	1,900	0.44	< 0.0045	< 0.0047
Chloromethane	150	460	1,300	0.98	< 0.0045	< 0.0047
2-Chlorotoluene (o-Chlorotoluene)	910	910	910	4.7	< 0.0045	< 0.0047
4-Chlorotoluene (p-Chlorotoluene)	250	250	250	4.8	< 0.0045	< 0.0047
Dibromochloromethane	10	32	800	0.43	< 0.0045	< 0.0047
1,2-Dibromoethane (EDB) ¹	0.5	1.6	180	0.00028	<0.0045 R	<0.0047 R
Dibromomethane (Methylene Bromide)	32	98	540	0.039	< 0.0045	< 0.0047
1,2-Dichlorobenzene	380	380	380	12	< 0.0045	< 0.0047
1,3-Dichlorobenzene	NE	NE	NE	NE	< 0.0045	< 0.0047
1,4-Dichlorobenzene	36	110	16,000	1.4	< 0.0045	< 0.0047
trans-1,4-Dichloro-2-butene	0.1	0.32	44	0.00012	<0.089 R	<0.093 R
Dichlorodifluoromethane	120	370	850	6	< 0.0045	< 0.0047
1,1-Dichloroethane (1,1-DCA)	50	160	1,700	0.15	< 0.0045	< 0.0047
1,2-Dichloroethane (1,2-DCA) ¹	6.4	20	730	0.028	< 0.0045	< 0.0047
1,1-Dichloroethene (1,1-DCE)	320	1,000	1,200	0.05	< 0.0045	< 0.0047
cis-1,2-Dichloroethene (cis-1,2-DCE)	220	2,300	2,400	0.41	< 0.0045	< 0.0047
trans-1,2-Dichloroethene (trans-1,2-DCE)	1,700	1,700	1,700	0.59	<0.0045	< 0.0047
1,2-Dichloropropane	14	44	370	0.033	<0.0045	< 0.0047
1,3-Dichloropropane	1,500	1,500	1,500	2.6	< 0.0045	< 0.0047
2,2-Dichloropropane	NE	NE	NE	NE	<0.0045	< 0.0047
1,1-Dichloropropene	NE	NE	NE	NE	<0.0045	< 0.0047
1,3-Dichloropropene (cis)	NE	NE	NE	NE	<0.0045	< 0.0047
1,3-Dichloropropene (trans)	NE	NE	NE	NE	<0.0045	< 0.004/
Ethylbenzene	81	250	480	16	<0.0045	<0.0047
Etnyi methacrylate	1,100	1,100	1,100	2.2	<0.089	<0.093
Hexachlorobutadiene	87	300	1,800	0.12	<0.0045	<0.0047
n-Hexane	140	140	140	44	<0.0045	<0.004/
2-Hexanone	280	1,300	3,300	0.18	<0.089	<0.093
Iodomethane	NE	NE	NE	NE	<0.089	<0.093
Isopropyibenzene (Cumene)	270	2/0	2/0	15	<0.0045	<0.0047
p-Isopropyltoluene	NE	NE	NE	NE	<0.0045	<0.0047
Methylene Chloride	490	3,200	3,300	0.025	<0.018	<0.019

SUMMARY OF SOIL ANALYTICAL DATA PROPOSED SONIC RESTAURANT KOKOMO, INDIANA

Sample ID (and Depth - ft.):	IDEM 2012 RCG RESIDENTIAL	IDEM 2012 RCG COMMERCIAL	IDEM 2012 RCG EXCAVATION DIRECT	IDEM 2012 RCG SOIL MIGRATION TO	B-1 (10-12)		B-2 (9-11)
Sample Date:	DIRECT CONTACT SLs (*)	DIRECT CONTACT SLs (**)	CONTACT SLs (#)	GROUNDWATER SLs (^)	01/11/2016		01/11/2016
Parameters							
1-Methylnaphthalene	240	730	40,000	1.2	< 0.0089		< 0.0093
2-Methylnaphthalene	320	3,000	6,800	3.7	< 0.0089		<0.0093
Methyl Isobutyl Ketone (MIBK)	3,400	3,400	3,400	5.4	< 0.022		< 0.023
Methyl Tert-Butyl Ether (MTBE)	600	2,100	8,900	0.63	< 0.0045		< 0.0047
Naphthalene	53	170	3,100	0.11	< 0.0045		< 0.0047
Propyl benzene	260	260	260	25	< 0.0045		< 0.0047
Styrene	870	870	870	2.2	< 0.0045		< 0.0047
1,1,1,2-Tetrachloroethane	28	88	680	0.043	< 0.0045		< 0.0047
1,1,2,2-Tetrachloroethane	8.4	27	1,900	0.0059	< 0.0045		< 0.0047
Tetrachloroethene (PCE)	110	170	170	0.045	< 0.0045		< 0.0047
Toluene	820	820	820	14	< 0.0045		< 0.0047
1,2,3-Trichlorobenzene	69	660	1,400	0.42	< 0.0045		< 0.0047
1,2,4-Trichlorobenzene	81	260	400	4.1	< 0.0045		< 0.0047
1,1,1-Trichloroethane (1,1,1-TCA)	640	640	640	1.4	< 0.0045		< 0.0047
1,1,2-Trichloroethane (1,1,2-TCA)	2.1	6.3	35	0.032	< 0.0045		< 0.0047
Trichloroethene (TCE)	5.7	19	95	0.036	< 0.0045		< 0.0047
Trichlorofluoromethane	1,100	1,200	1,200	14	< 0.0045		< 0.0047
1,2,3-Trichloropropane	0.071	1.1	46	0.000065	< 0.0045	R	<0.0047 R
1,2,4-Trimethylbenzene	81	220	220	0.44	< 0.0045		< 0.0047
1,3,5-Trimethylbenzene	180	180	180	3.4	< 0.0045		< 0.0047
Vinyl acetate	1,300	2,800	2,800	1.7	< 0.089		< 0.093
Vinyl Chloride	0.83	17	1,300	0.014	< 0.0045		< 0.0047
Xylene (Total)	260	260	260	200	<0.0089		<0.0093
	PAHs (82	270)					
Acenaphthene	4,900	45,000	100,000	100	< 0.0055		< 0.0061
Acenaphthylene	NE	NE	NE	NE	< 0.0055		< 0.0061
Anthracene	24,000	100,000	100,000	1,200	< 0.0055		< 0.0061
Benzo(a)anthracene	2.1	29	1,600	2.4	< 0.0055		< 0.0061
Benzo(a)pyrene	0.21	2.9	160	4.7	< 0.0055		< 0.0061
Benzo(b)fluoranthene	2.1	29	1,600	8.2	< 0.0055		< 0.0061
Benzo(g,h,i)perylene	NE	NE	NE	NE	< 0.0055		< 0.0061
Benzo(k)fluoranthene	21	290	16,000	80	< 0.0055		< 0.0061
Chrysene	210	2,900	100,000	250	0.006	8	< 0.0061
Dibenz(a,h)anthracene	0.21	2.9	160	2.6	< 0.0055		< 0.0061
Fluoranthene	3,200	30,000	68,000	1,800	0.007	9	< 0.0061
Fluorene	3,200	30,000	68,000	110	< 0.0055		< 0.0061
Indeno(1,2,3-cd)pyrene	2.1	29	1,600	47	< 0.0055		< 0.0061
1-Methylnaphthalene	240	730	40,000	1.2	< 0.0055		<0.0061
2-Methylnaphthalene	320	3,000	6,800	3.7	< 0.0055		<0.0061
Naphthalene	53	170	3,100	0.11	< 0.0055		< 0.0061
Phenanthrene	NE	NE	NE	NE	0.012	2	<0.0061
Pyrene	2,400	23,000	51,000	260	0.008	7	< 0.0061

Abbreviations & Notes

All results and IDEM Screening Levels are reported in mg/kg or parts per million (ppm)

IDEM = Indiana Department of Environmental Management

RCG = Remediation Closure Guide

SLs = Screening Levels (updated March 2015)

¹ = Identified in the IDEM guidance as Lead Scavangers

NA = Not analyzed NE=Not Established

R = Reporting limit (RL) above closure level due to dilution

* = Above Residential Direct Contact Screening Level

** = Above Commercial/Industrial Direct Contact Screening Level

= Above Excavation Direct Contact Screening Level

^ = Above Soil Migration to Groundwater Screening Level

SUMMARY OF GROUNDWATER ANALYTICAL DATA PROPOSED SONIC RESTAURANT KOKOMO, INDIANA

Sample ID (and Depth - ft.):	IDEM 2012 RCG RESIDENTIAL	IDEM 2012 RCG RESIDENTIAL	IDEM 2012 RCG COM/IND	B-1 (10-20	D)	B (6-	B-2 (6-16)		
Sample Date:	TAP SLs (^)	VAPOR SLs (*)	VAPOR SLs (**)	01/11/2	016	01/11	/2016		
Parameters									
FUI	LL LIST VOCs (8260)		1						
Acetone (2-Propanone)	12,000	NE	NE	<100		<100			
Acrolein	0.041	NE	NE	<50.0	R	<50.0	R		
Acrylonitrile	0.45	NE	NE	<100	R	<100	R		
Benzene	5	28	120	<5.0		<5.0			
Bromobenzene	62	NE	NE	<5.0		<5.0			
Bromochloromethane	83	NE	NE	<5.0		<5.0			
Bromodichloromethane	80	NE	NE	<5.0		<5.0			
Bromoform (tribromomethane)	80	NE	NE	<5.0		<5.0			
Bromomethane (methyl bromide)	8	NE	NE	<5.0		<5.0			
2-Butanone (MEK)	5,600	NE	NE	<25.0		<25.0			
n-Butylbenzene	1,000	NE	NE	<5.0		<5.0			
sec-Butylbenzene	2,000	NE	NE	<5.0		<5.0			
tert-Butylbenzene	690	NE	NE	<5.0		<5.0			
Carbon disulfide	810	NE	NE	<10.0		<10.0			
Carbon Tetrachloride	5	6.5	28	<5.0		<5.0			
Chlorobenzene	100	NE	NE	<5.0		<5.0			
Chloroethane	NE	NE	NE	<5.0		<5.0			
Chloroform	80	NE	NE	<5.0		<5.0			
Chloromethane	190	NE	NE	<5.0		<5.0			
2-Chlorotoluene (o-Chlorotoluene)	240	NE	NE	<5.0		<5.0			
4-Chlorotoluene (p-Chlorotoluene)	250	NE	NE	<5.0		<5.0			
Dibromochloromethane	80	NE	NE	<5.0		<5.0			
1,2-Dibromoethane (EDB)	0.05	NE	NE	<5.0	R	<5.0	R		
1 2 Dishbashanana	8	NE	NE	<5.0		<5.0			
1,2-Dichlorobenzene	000	NE	NE	<5.0		<5.0			
1,3-Dichlorobenzene	NE 75	NE	NE	<5.0		<5.0			
1,4-Dichlorobenzene	/5	NE	NE	< 3.0	D	<5.0	D		
Dishlara diffuaramethana	0.013	NE	NE	<100	K	<100	ĸ		
1 1 Disklamathana (1 1 DCA) ¹	200	NE 120	NE 550	<5.0		<5.0			
1,1-Dichloroethane (1,1-DCA)	27	130	330	< 5.0		< 5.0			
1,2-Dichloroethane (1,2-DCA)	7	30	1 200	<5.0		<5.0			
cis 1.2 Dichloroethene (cis 1.2 DCE)	70	NE	1,500 NF	<5.0		<5.0			
trans_1.2-Dichloroethene (trans_1.2-DCE)	100	NE	NE	<5.0		<5.0			
1 2-Dichloropropage	5	NE	NE	<5.0		<5.0			
1.3-Dichloropropage	370	NE	NE	<5.0		<5.0			
2.2-Dichloropropane	NE	NE	NE	<5.0		<5.0			
1 1-Dichloropropene	NE	NE	NE	<5.0		<5.0			
1.3-Dichloropropene (cis)	NE	NE	NE	<5.0		<5.0			
1 3-Dichloropropene (trans)	NE	NE	NE	<5.0		<5.0			
Fthylbenzene	700	NE	NE	<5.0		<5.0			
Ethyl methacrylate	460	NE	NE	<100		<100			
Hexachlorobutadiene	3.0	NE	NE	<5.0	R	<5.0	R		
n-Hexane	320	NE	NE	<5.0	R	<5.0	ĸ		
2-Hexanone	38	NE	NE	<25.0		<25.0			
Iodomethane	NE	NE	NE	<10.0		<10.0			
Isopropylbenzene (Cumene)	450	NE	NE	<5.0		<5.0			
p-Isopropyltoluene	NE	NE	NE	<5.0		<5.0			
Methylene Chloride	5	NE	NE	<5.0		<5.0			

SUMMARY OF GROUNDWATER ANALYTICAL DATA PROPOSED SONIC RESTAURANT KOKOMO, INDIANA

IAP JJ VATOR JJ <thvator jj<="" th=""> VATOR JJ <t< th=""><th>Sample ID (and Depth - ft.):</th><th>IDEM 2012 RCG RESIDENTIAL</th><th>IDEM 2012 RCG RESIDENTIAL</th><th>IDEM 2012 RCG COM/IND</th><th>B-1 (10-20</th><th>))</th><th>1 (6</th><th>3-2 -16)</th></t<></thvator>	Sample ID (and Depth - ft.):	IDEM 2012 RCG RESIDENTIAL	IDEM 2012 RCG RESIDENTIAL	IDEM 2012 RCG COM/IND	B-1 (10-20))	1 (6	3-2 -16)
Parameters Image Image <thimage< th=""> Image Image</thimage<>	Sample Date:	(^)	(*)	(**)	01/11/20)16	01/1	1/2016
1.4.de/naphthalene 1.1.0 NE 8.5. < 5.0 2.Methylnaphthalene 3.6 NE NE <10.0	Parameters							
2-Methylpaphinaphinalene16NENE10.0<10.0Methyl Tori-Bayl Ether (MTBE)140NENE4.0<4.0	1-Methylnaphthalene	11.0	NE	NE	<5.0		<5.0	
Methyl Itobutyl Ketone (MIBK)1,200NENE<25.0<25.0Methyl Tert-Buryl Ether (MTBE)140NFNF<10.0	2-Methylnaphthalene	36	NE	NE	<10.0		<10.0	
Methyl Ten-Buryl Eher (MTBE) 140 NE NE Naphthalene 1.7 110 460 <1.7	Methyl Isobutyl Ketone (MIBK)	1,200	NE	NE	<25.0		<25.0	
Naphtalene 1.7 110 460 Propylbenzene 660 NE NE <50	Methyl Tert-Butyl Ether (MTBE)	140	NE	NE	<4.0		<4.0	
ProgNerzene 660 NE NE 5.0 <5.0 Styrene 100 NE NE <5.0	Naphthalene	1.7	110	460	<1.7		<1.7	
Siyrene 100 NE NE 5.0 <5.0 1,1,1,2:Tetrachloroethane 6 NE NE <5.0	Propylbenzene	660	NE	NE	<5.0		<5.0	
1,1,1,2-Tetrachloroethane 6 NE NE <5.0 <5.0 1,1,2,2-Tetrachloroethane 0.76 72 310 <5.0	Styrene	100	NE	NE	<5.0		<5.0	
1,1.2.2-Tetrachloroethane 0.76 72 310 <50 R <50 R Tetrachloroethen (PCE) 5 110 470 <50 <50 $1,2.4$ -Trichlorobenzene 70 NE NE <50 <50 $1.2,4$ -Trichlorobenzene 70 NE NE <50 <50 $1.4,1$ -Trichloroethane ($1,1,1$ -TCA) 200 13.000 $54,000$ <50 <50 $1.1,2$ -Trichloroethane ($1,1,2$ -TCA) 5 11 46 <50 <50 Trichloroethane ($1,1,2$ -TCA) 5 $9,1$ 38 <50 <50 Trichloroptopane 0.0075 NE NE <50 <50 $1,3,5$ -Trinethylbenzene 15 NE NE <50 <50 $1,3,5$ -Trinethylbenzene 120 NE NE <500 <500 Vinyl Choirde 20 21 35 <20 <20 Vinyl Choirde 20 21 35 <20 <20 Xipen (Total) <t< td=""><td>1,1,1,2-Tetrachloroethane</td><td>6</td><td>NE</td><td>NE</td><td><5.0</td><td></td><td><5.0</td><td></td></t<>	1,1,1,2-Tetrachloroethane	6	NE	NE	<5.0		<5.0	
Tetrachloroethene (PCE) 5 110 470 5.0 5.0 Toluene 1,000 NE NE < 5.0 < 5.0 12,3-Trichlorobenzene 7.0 NE NE < 5.0 < 5.0 1,1,1-Trichloroethane (1,1,1-TCA) 200 13,000 $54,000$ < 5.0 < 5.0 1,1,2-Trichloroethane (1,1,2-TCA) 5 11 46 < 5.0 < 5.0 Trichloroptenane (1,1,2-TCA) 5 9,1 38 < 5.0 < 5.0 Trichloroptopane 0.0075 NE NE < 5.0 < 5.0 1,2,3-Trichloroptopane 0.0075 NE NE < 5.0 < 5.0 1,2,3-Trichloroptopane 120 NE NE < 5.0 < 5.0 1,2,3-Trichloroptopane 1000 NE NE < 5.0 < 5.0 Vinyl actate 410 NE NE < 5.0 < 5.0 Vingl Choide 2.0 2.1 35 < 2.0 < 2.0 Xylene (Total) 10.000 NE NE < 1.0 < 1.0	1,1,2,2-Tetrachloroethane	0.76	72	310	<5.0	R	<5.0	R
Toluene $1,000$ NE NE 5.0 5.0 $1,2,3$ -Trichlorobenzene 7.0 NE NE 5.0 5.0 $1,1,1$ -Trichlorobenzene 70 NE NE 5.0 5.0 $1,1,1$ -Trichlorobenzene 70 NE NE 5.0 5.0 $1,1,2$ -Trichlorobethene $(1,1,2-TCA)$ 5 11 46 5.0 5.0 Trichlorobethene (TCE) 5 9.1 38 5.0 5.0 Trichloropropane 0.0075 NE NE 5.0 8.50 8.50 $1,3.5$ -Trinethylbenzene 15 NE NE 5.0 5.0 $1,3.5$ -Trinethylbenzene 120 NE NE 5.0 5.0 $1,3.5$ -Trinethylbenzene 12.0 2.1 35 2.0 2.0 Vipil acetate 410 NE NE 8.00 50.0 51.0 Vipil acetate 2.0 2.1 35 2.0	Tetrachloroethene (PCE)	5	110	470	<5.0		<5.0	
1.2.3-Trichlorobenzene 7.0 NE NE <5.0 <5.0 1.2.4-Trichlorobenzene 70 NE NE <5.0	Toluene	1,000	NE	NE	<5.0		<5.0	
12.4-Trichlorobenzene 70 NE NE <50 <50 1.1,1-Trichloroethane (1,1,1-TCA) 200 13.000 54,000 <50	1,2,3-Trichlorobenzene	7.0	NE	NE	<5.0		<5.0	
1,1,1-Trichloroethane (1,1,1-TCA) 200 $13,000$ $54,000$ <5.0 <5.0 1,1,2-Trichloroethane (1,1,2-TCA) 5 11 46 <5.0 <5.0 Trichloroethane (TCE) 5 9.1 38 <5.0 <5.0 Trichlorofluoromethane 1,100 NE NE <5.0 <5.0 1,2,3-Trichloroppane 0.0075 NE NE <5.0 <5.0 1,3,5-Trimethylbenzene 15 NE NE <5.0 <5.0 Vinyl acetate 410 NE NE <5.0 <5.0 Vinyl Choride 2,0 2,1 35 <2.0 <2.0 Xylen (Total) 10,000 NE NE <1.00 <1.00 Acenaphthylene S30 NE NE <1.0 <1.0 Acenaphthylene NE NE NE <0.10 <0.10 Benzo(a)anthracene 0.34 NE NE <0.10 <0.10 Benzo(b)flooranthene 0.34 NE NE <0.10 <0.10	1,2,4-Trichlorobenzene	70	NE	NE	<5.0		<5.0	
1.1.2-Trichloroethane (1,1,2-TCA) 5 11 46 <5.0 <5.0 Trichloroethane (1CE) 5 9.1 38 <5.0 <5.0 Trichloroptomethane 1,100 NE NE <5.0 <5.0 Trichloroptopane 0.0075 NE NE <5.0 R <5.0 1.2,3-Trichloropropane 120 NE NE <5.0 <5.0 <5.0 1.3,5-Trinchlybenzene 120 NE NE <5.0 <5.0 <5.0 Vinyl acetate 410 NE NE <5.0 <5.0 <5.0 Vinyl Choride 2.0 2.1 35 <2.0 <2.0 <2.0 Xylene (Total) 10,000 NE NE <1.0 <1.0 <1.0 Acenaphthene 530 NE NE <1.0 <1.0 <1.0 Acenaphthylene NE NE NE <0.10 <0.10 <0.10 Benzo(a)aptrace 0.34 NE NE <0.10 <0.10 <0.10 <tr< td=""><td>1,1,1-Trichloroethane (1,1,1-TCA)</td><td>200</td><td>13,000</td><td>54,000</td><td><5.0</td><td></td><td><5.0</td><td></td></tr<>	1,1,1-Trichloroethane (1,1,1-TCA)	200	13,000	54,000	<5.0		<5.0	
Trichloroethene (TCE) 5 9.1 38 <5.0 <5.0 Trichlorofluoromethane $I,100$ NE NE K S .0 S .0 1,2,3-Trichloropropane 0.0075 NE NE K S .0 R S .0 R 1,2,4-Trimethylbenzene 15 NE NE S .0 S .0 S .0 1,3,5-Trimethylbenzene 120 NE NE S .0 S .0 S .0 Vinyl acetate 410 NE NE S .0 S .0 S .0 Vinyl Chloride 2.0 2.1 35 < 2 .0 < 2 .0 X .0 Xylene (Total) 10,000 NE NE NE < 1 .0 < 1 .0 Acenaphthylene NE NE NE < 1 .0 < 1 .0 < 1 .0 Anthracene 1.800 NE NE < 0.10 < 0.10 < 0.10 Benzo(a)anthracene 0.34 NE NE < 0.10 < 0.10 < 0.10 Benzo(a)fluoranthene 0.34 NE NE <t< td=""><td>1,1,2-Trichloroethane (1,1,2-TCA)</td><td>5</td><td>11</td><td>46</td><td><5.0</td><td></td><td><5.0</td><td></td></t<>	1,1,2-Trichloroethane (1,1,2-TCA)	5	11	46	<5.0		<5.0	
Trichlorofluoromethane $I,100$ NE NE < 5.0 < 5.0 R $I,2,3$ -Trichloropropane 0.0075 NE NE < 5.0 R < 5.0 R $I,3,4$ -Trimethylbenzene $I5$ NE NE < 5.0 < 5.0 < 5.0 $I,3,5$ -Trimethylbenzene $I20$ NE NE < 5.0 < 5.0 Vinyl acetate 410 NE NE < 5.0 < 5.0 Vinyl chloride 2.0 2.1 35 < 2.0 < 2.0 Xylene (Total) $10,000$ NE NE NE < 1.0 < 1.0 Acenaphthene 530 NE NE < 1.0 < 1.0 < 1.0 Acenaphthylene NE NE NE NE < 0.10 < 0.10 < 0.10 Benzo(a)pyrene 0.2 NE NE < 0.10 < 0.10 < 0.10 Benzo(b)fluoranthene 0.34 NE NE < 0.10 <td>Trichloroethene (TCE)</td> <td>5</td> <td>9.1</td> <td>38</td> <td><5.0</td> <td></td> <td><5.0</td> <td></td>	Trichloroethene (TCE)	5	9.1	38	<5.0		<5.0	
1,2,3-Trichloropropane 0.0075 NE NE < 5.0 R < 5.0 R 1,2,4-Trimethylbenzene 15 NE NE < 5.0 < 5.0 < 5.0 1,3,5-Trimethylbenzene 120 NE NE < 5.0 < 5.0 < 5.0 Vinyl acetate 410 NE NE < 5.0 < 5.0 < 0.0 Vinyl acetate 2.0 2.1 35 < 2.0 < 2.0 < 2.0 Xylene (Total) 10,000 NE NE < 10.0 < 10.0 Constant of the second seco	Trichlorofluoromethane	1,100	NE	NE	<5.0		<5.0	
1.2.4-Trimethylbenzene 15 NE NE < 5.0 < 5.0 1.3.5-Trimethylbenzene 120 NE NE < 5.0 < 5.0 Vinyl acetate 410 NE NE < 5.0 < 5.0 Vinyl acetate 2.0 2.1 35 < 2.0 < 2.0 Vinyl Chloride 2.0 2.1 35 < 2.0 < 2.0 Xylene (Total) 10,000 NE NE < 10.0 < 10.0 Acenaphthene 530 NE NE < 1.0 < 1.0 Acenaphthylene NE NE NE < 0.10 < 0.10 Anthracene 1,800 NE NE < 0.10 < 0.10 Benzo(a)anthracene 0.34 NE NE < 0.10 < 0.10 Benzo(b)fluoranthene 0.34 NE NE < 0.10 < 0.10 Benzo(k)fluoranthene 3.4 NE NE < 0.10 < 0.10 Chrysene 34 NE NE < 0.10 < 0.10 Dibenz(a,h)anthracene	1,2,3-Trichloropropane	0.0075	NE	NE	<5.0	R	<5.0	R
1.3,5-Trimethylbenzene 120 NE NE < 5.0 < 5.0 Vinyl acetate 410 NE NE < 50.0 < 50.0 Vinyl choride 2.0 2.1 35 < 2.0 < 2.0 Xylene (Total) 10,000 NE NE NE < 10.0 PAHS (8270) Vertexent (S270) Acenaphthylene S30 NE NE < 1.0 < 1.0 Acenaphthylene NE NE NE < 0.10 < 0.10 < 0.10 Benzo(a)anthracene 0.34 NE NE < 0.10 < 0.10 Benzo(a)pyrene 0.2 NE NE < 0.10 < 0.10 Benzo(a)pyrene 0.2 NE NE < 0.10 < 0.10 Benzo(a)pyrene 0.34 NE NE < 0.10 < 0.10 Benzo(a)pyrene 0.34 NE NE < 0.10 < 0.10 Benzo(a)hriacenthene 0.34 NE NE < 0.10 < 0.10 Benzo(a)hripyrene <td>1.2.4-Trimethylbenzene</td> <td>15</td> <td>NE</td> <td>NE</td> <td><5.0</td> <td></td> <td><5.0</td> <td></td>	1.2.4-Trimethylbenzene	15	NE	NE	<5.0		<5.0	
Vinyl acetate 410 NE NE < 50.0 < 50.0 Vinyl Chloride 2.0 2.1 35 < 2.0 < 2.0 Xylene (Total) 10,000 NE NE < 10.0 < 10.0 PAHs (8270) Constant (Second) < 10.0 Acenaphthene NE NE NE < 1.0 < 1.0 Acenaphthylene NE NE NE < 0.10 < 0.10 < 0.10 Acenaphthylene NE NE NE NE < 0.10 < 0.10 < 0.10 Anthracene 0.34 NE NE < 0.10 < 0.10 < 0.10 Benzo(a)pyrene 0.2 NE NE < 0.10 < 0.10 < 0.10 Benzo(b)fluoranthene 0.34 NE NE < 0.10 < 0.10 < 0.10 Benzo(k)fluoranthene 3.4 NE NE < 0.10 < 0.10 Chrysene 34 NE <td>1.3.5-Trimethylbenzene</td> <td>120</td> <td>NE</td> <td>NE</td> <td><5.0</td> <td></td> <td><5.0</td> <td></td>	1.3.5-Trimethylbenzene	120	NE	NE	<5.0		<5.0	
Vinyl Chloride 2.0 2.1 35 < 2.0 < 2.0 Xylene (Total) $10,000$ NE NE < 10.0 < 10.0 PAHs (8270) RE NE < 1.0 < 1.0 < 1.0 Acenaphthene $S30$ NE NE $< NE$ < 1.0 < 1.0 Acenaphthylene NE NE NE < 0.10 < 0.10 < 0.10 Acenaphthylene 0.34 NE NE < 0.10 < 0.10 < 0.10 Benzo(a)anthracene 0.34 NE NE < 0.10 < 0.10 Benzo(a)pyrene 0.2 NE NE < 0.10 < 0.10 Benzo(b)fluoranthene 0.34 NE NE < 0.10 < 0.10 Benzo(k)fluoranthene 3.4 NE NE < 0.10 < 0.10 Benzo(k)fluoranthene 0.034 NE NE < 0.10 < 0.10 Fluoranthene 0.034 NE NE	Vinvl acetate	410	NE	NE	<50.0		<50.0	
Xylene (Total) $10,000$ NE NE <10.0 <10.0 PAHs (8270) Image: Net (10,000) NE NE <1.0 <1.0 Acenaphthene S30 NE NE <1.0 <1.0 Acenaphtylene NE NE NE <1.0 <1.0 Antracene $1,800$ NE NE <0.10 <0.10 Benzo(a)antracene 0.34 NE NE <0.10 <0.10 Benzo(a)pyrene 0.2 NE NE <0.10 <0.10 Benzo(g),hiporglene 0.2 NE NE <0.10 <0.10 Benzo(k)fluoranthene 0.34 NE NE <0.10 <0.10 Benzo(k)fluoranthene 3.4 NE NE <0.10 <0.10 Benzo(k)fluoranthene 3.4 NE NE <0.10 <0.10 Chrysene 3.4 NE NE <0.10 <0.10 Benzo(k)fluoranthene 0.034 NE	Vinyl Chloride	2.0	2.1	35	<2.0		<2.0	
PAHs (8270) PAHs (8270) Acenaphthene 530 NE NE <1.0	Xylene (Total)	10,000	NE	NE	<10.0		<10.0	
Acenaphthene 530 NE NE <1.0 <1.0 Acenaphthylene NE NE NE <1.0 <1.0 Anthracene $1,800$ NE NE <0.10 <0.10 Benzo(a)anthracene 0.34 NE NE <0.10 <0.10 Benzo(a)pyrene 0.2 NE NE <0.10 <0.10 Benzo(b)fluoranthene 0.34 NE NE <0.10 <0.10 Benzo(g,h.)perylene 0.34 NE NE <0.10 <0.10 Benzo(k)fluoranthene 3.4 NE NE <0.10 <0.10 Benzo(k)fluoranthene 3.4 NE NE <0.10 <0.10 Chrysene 34 NE NE <0.50 <0.50 Dibenz(a,h)anthracene 0.034 NE NE <1.0 <1.0 Fluoranthene 0.34 NE NE <1.0 <1.0 <1.0 Fluoranthene </td <td></td> <td>PAHs (8270)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		PAHs (8270)						
Acenaphthylene NE NE NE NE <td>Acenaphthene</td> <td>530</td> <td>NE</td> <td>NE</td> <td><1.0</td> <td></td> <td><1.0</td> <td></td>	Acenaphthene	530	NE	NE	<1.0		<1.0	
Anthracene $1,800$ NE NE 0.10 0.10 Benzo(a)anthracene 0.34 NE NE 0.10 0.10 Benzo(a)pyrene 0.2 NE NE 0.10 0.10 Benzo(b)fluoranthene 0.34 NE NE 0.10 0.10 Benzo(g,h,i)perylene NE NE NE 0.10 0.10 Benzo(k)fluoranthene 3.4 NE NE 0.10 0.10 Chrysene 3.4 NE NE 0.10 0.10 Dibenz(a,h)anthracene 0.034 NE NE 0.50 0.50 Dibenz(a,h)anthracene 0.034 NE NE 0.10 R Fluoranthene 0.034 NE NE 0.10 R Fluorene 290 NE NE 0.10 0.10 Indeno(1,2,3-cd)pyrene 0.34 NE NE 0.10 0.10 1-Methylanphthalene 11	Acenaphthylene	NE	NE	NE	<1.0		<1.0	
Benzo(a)anthracene 0.34 NE NE 0.10 0.10 Benzo(a)pyrene 0.2 NE NE 0.10 0.10 Benzo(b)fluoranthene 0.34 NE NE 0.10 0.10 Benzo(g,h,i)perylene NE NE NE 0.10 0.10 Benzo(k)fluoranthene 3.4 NE NE 0.10 0.10 Chrysene 3.4 NE NE 0.50 0.50 Dibenz(a,h)anthracene 0.034 NE NE 0.10 R Fluoranthene 800 NE NE 0.10 R Fluoranthene 800 NE NE 1.0 1.0 Fluoranthene 9034 NE NE 0.10 0.10 Fluoranthene 800 NE NE 0.10 0.10 Indeno(1,2,3-cd)pyrene 0.34 NE NE 0.10 0.10 2-Methylnaphthalene 11 NE <td>Anthracene</td> <td>1,800</td> <td>NE</td> <td>NE</td> <td>< 0.10</td> <td></td> <td>< 0.10</td> <td></td>	Anthracene	1,800	NE	NE	< 0.10		< 0.10	
Benzo(a)pyrene 0.2 NE NE <0.10 <0.10 Benzo(b)fluoranthene 0.34 NE NE <0.10	Benzo(a)anthracene	0.34	NE	NE	< 0.10		< 0.10	
Benzo(b)fluoranthene 0.34 NE NE <th< th=""> <th< th=""> <th< td=""><td>Benzo(a)pyrene</td><td>0.2</td><td>NE</td><td>NE</td><td>< 0.10</td><td></td><td>< 0.10</td><td></td></th<></th<></th<>	Benzo(a)pyrene	0.2	NE	NE	< 0.10		< 0.10	
Benzo(s,h,i)perylene NE NE NE 0.10 0.10 Benzo(k)fluoranthene 3.4 NE NE 0.10 0.10 Chrysene 34 NE NE 0.50 0.50 Dibenz(a,h)anthracene 0.034 NE NE 0.10 R Fluoranthene 800 NE NE 0.10 R 0.10 R Fluorene 800 NE NE 0.10 0.10 0.10 0.10 Indeno(1,2,3-cd)pyrene 0.34 NE NE 0.10 0.10 1-Methylnaphthalene 11 NE NE 0.10 0.10 2-Methylnaphthalene 36 NE NE 0.10 0.10 Naphthalene 1.7 110 460 0.10 0.10 Phenanthrene NE NE NE 0.10 0.10	Benzo(b)fluoranthene	0.34	NE	NE	< 0.10		< 0.10	
Benzo(k)fluoranthene 3.4 NE NE <0.10 <0.10 Chrysene 34 NE NE <0.50	Benzo(g,h,i)perylene	NE	NE	NE	< 0.10		< 0.10	
Chrysene 34 NE NE <0.50 <0.50 Dibenz(a,h)anthracene 0.034 NE NE <0.10	Benzo(k)fluoranthene	3.4	NE	NE	< 0.10		< 0.10	
Disprt(a,h)anthracene 0.034 NE NE <0.10 R <0.10 R Fluoranthene 800 NE NE <1.0	Chrysene	34	NE	NE	< 0.50		< 0.50	
Fluoranthene 800 NE NE <1.0 <1.0 Fluoranthene 290 NE NE <1.0	Dibenz(a,h)anthracene	0.034	NE	NE	< 0.10	R	< 0.10	R
Fluorene 290 NE NE <1.0 <1.0 Indeno(1,2,3-cd)pyrene 0.34 NE NE <0.10	Fluoranthene	800	NE	NE	<1.0		<1.0	
Indeno(1,2,3-cd)pyrene 0.34 NE NE <0.10 <0.10 1-Methylnaphthalene 11 NE NE <1.0	Fluorene	290	NE	NE	<1.0		<1.0	
1-Methylnaphthalene 11 NE NE <th<< td=""><td>Indeno(1,2,3-cd)pyrene</td><td>0.34</td><td>NE</td><td>NE</td><td>< 0.10</td><td></td><td>< 0.10</td><td></td></th<<>	Indeno(1,2,3-cd)pyrene	0.34	NE	NE	< 0.10		< 0.10	
2-Methylnaphthalene 36 NE NE <1.0 <1.0 Naphthalene 1.7 110 460 <1.0	1-Methylnaphthalene	11	NE	NE	<1.0		<1.0	
Naphthalene 1.7 110 460 <1.0 <1.0 Phenanthrene NE NE NE <1.0	2-Methylnaphthalene	36	NE	NE	<1.0		<1.0	
Phenanthrene NE NE NE <th< th=""></th<>	Naphthalene	1.7	110	460	<1.0		<1.0	
Pyrene 120 NE NE <1.0 <1.0	Phenanthrene	NE	NE	NE	<1.0		<1.0	
	Pyrene	120	NE	NE	<1.0		<1.0	

Abbreviations & Notes

All results and IDEM Screening Levels are reported in $\,\mu\text{g/L}$ or parts per billion (ppb)

IDEM = Indiana Department of Environmental Management

RCG = Remediation Closure Guide

SLs = Screening Levels (updated March 2015)

¹ = Identified in the IDEM guidance as Lead Scavangers

NA = Not analyzed NE = Not Established

R = Reporting limit (RL) above closure level due to dilution

^ = Above Residential Tap Screening Level

* = Above Residential Vapor Screening Level

** = Above Commercial/Industrial Vapor Screening Level

APPENDIX E

Laboratory Certificate of Analysis and Sampling Chain of Custody

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

January 19, 2016

Mr. David Herring Alt & Witzig Engineering, Inc. 4105 West 99th Street Carmel, IN 46032

RE: Project: Proposed Sonic 16IN0007 Pace Project No.: 50136269

Dear Mr. Herring:

Enclosed are the analytical results for sample(s) received by the laboratory on January 11, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Regina K Bill

Regina Bedel regina.bedel@pacelabs.com Project Manager

Enclosures

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

CERTIFICATIONS

Project: Proposed Sonic 16IN0007

Pace Project No.: 50136269

Indiana Certification IDs

7726 Moller Road, Indianapolis, IN 46268 Illinois Certification #: 200074 Indiana Certification #: C-49-06 Kansas Certification #:E-10177 Kentucky UST Certification #: 0042 Kentucky WW Certification #:98019 Louisiana Certification #: 04076 Ohio VAP Certification #: CL-0065 Oklahoma Certification #: 2014-148 Texas Certification #: 1104704355-15-9 West Virginia Certification #: 330 Wisconsin Certification #: 999788130 USDA Soil Permit #: P330-10-00128

SAMPLE SUMMARY

Project:Proposed Sonic 16IN0007Pace Project No.:50136269

Lab ID	Sample ID	Matrix	Date Collected	Date Received
50136269001	B-1 (10-12)	Solid	01/11/16 10:45	01/11/16 14:25
50136269002	B-2 (9-11)	Solid	01/11/16 11:30	01/11/16 14:25
50136269003	B-1 (10-20)	Water	01/11/16 11:00	01/11/16 14:25
50136269004	B-2 (6-16)	Water	01/11/16 11:50	01/11/16 14:25

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

SAMPLE ANALYTE COUNT

Project:	Proposed Sonic 16IN0007
Pace Project No .:	50136269

Lab ID	Sample ID	Method	Analysts	Analytes Reported
50136269001	B-1 (10-12)	EPA 8270 by SIM	JCM	20
		EPA 8260	GRM	75
		SM 2540G	ESC	1
50136269002	B-2 (9-11)	EPA 8270 by SIM	JCM	20
		EPA 8260	GRM	75
		SM 2540G	ESC	1
50136269003	B-1 (10-20)	EPA 8270 by SIM LVE	TBP	20
		EPA 8260	JLZ	75
50136269004	B-2 (6-16)	EPA 8270 by SIM LVE	ТВР	20
		EPA 8260	JLZ	75

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

SUMMARY OF DETECTION

Project: Proposed Sonic 16IN0007

Pace Project No.: 50136269

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
50136269001	B-1 (10-12)					
EPA 8270 by SIM	Chrysene	0.0068	mg/kg	0.0055	01/13/16 02:37	
EPA 8270 by SIM	Fluoranthene	0.0079	mg/kg	0.0055	01/13/16 02:37	
EPA 8270 by SIM	Phenanthrene	0.012	mg/kg	0.0055	01/13/16 02:37	
EPA 8270 by SIM	Pyrene	0.0087	mg/kg	0.0055	01/13/16 02:37	
SM 2540G	Percent Moisture	9.7	%	0.10	01/12/16 14:08	
50136269002	B-2 (9-11)					
SM 2540G	Percent Moisture	18.1	%	0.10	01/12/16 14:08	

ANALYTICAL RESULTS

Project: Proposed Sonic 16IN0007

Pace Project No.: 50136269

Sample: B-1 (10-12)	Lab ID: 501	36269001	Collected: 01/11/1	6 10:4	5 Received: 01	/11/16 14:25 N	latrix: Solid	
Results reported on a "dry weight" basis	s and are ad	justed for per	rcent moisture, sa	mple s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV PAH by SIM	nalytical Met	hod: EPA 8270	0 by SIM Preparati	on Met	hod: EPA 3546			
Acenaphthene	ND	mg/kg	0.0055	1	01/12/16 13:00	01/13/16 02:37	83-32-9	
Acenaphthylene	ND	mg/kg	0.0055	1	01/12/16 13:00	01/13/16 02:37	208-96-8	
Anthracene	ND	mg/kg	0.0055	1	01/12/16 13:00	01/13/16 02:37	120-12-7	
Benzo(a)anthracene	ND	mg/kg	0.0055	1	01/12/16 13:00	01/13/16 02:37	56-55-3	
Benzo(a)pyrene	ND	mg/kg	0.0055	1	01/12/16 13:00	01/13/16 02:37	50-32-8	
Benzo(b)fluoranthene	ND	mg/kg	0.0055	1	01/12/16 13:00	01/13/16 02:37	205-99-2	
Benzo(g,h,i)perylene	ND	mg/kg	0.0055	1	01/12/16 13:00	01/13/16 02:37	191-24-2	
Benzo(k)fluoranthene	ND	mg/kg	0.0055	1	01/12/16 13:00	01/13/16 02:37	207-08-9	
Chrysene	0.0068	mg/kg	0.0055	1	01/12/16 13:00	01/13/16 02:37	218-01-9	
Dibenz(a,h)anthracene	ND	mg/kg	0.0055	1	01/12/16 13:00	01/13/16 02:37	53-70-3	
Fluoranthene	0.0079	mg/kg	0.0055	1	01/12/16 13:00	01/13/16 02:37	206-44-0	
Fluorene	ND	mg/kg	0.0055	1	01/12/16 13:00	01/13/16 02:37	86-73-7	
Indeno(1,2,3-cd)pyrene	ND	mg/kg	0.0055	1	01/12/16 13:00	01/13/16 02:37	193-39-5	
1-Methylnaphthalene	ND	ma/ka	0.0055	1	01/12/16 13:00	01/13/16 02:37	90-12-0	
2-Methylnaphthalene	ND	mg/kg	0.0055	1	01/12/16 13:00	01/13/16 02:37	91-57-6	
Naphthalene	ND	ma/ka	0.0055	1	01/12/16 13:00	01/13/16 02:37	91-20-3	
Phenanthrene	0.012	ma/ka	0.0055	1	01/12/16 13:00	01/13/16 02:37	85-01-8	
Pyrene	0.0087	ma/ka	0.0055	1	01/12/16 13:00	01/13/16 02:37	129-00-0	
Surrogates				-	•			
2-Fluorobiphenyl (S)	84	%.	38-110	1	01/12/16 13:00	01/13/16 02:37	321-60-8	
p-Terphenyl-d14 (S)	81	%.	32-111	1	01/12/16 13:00	01/13/16 02:37	1718-51-0	
8260 MSV 5035A VOA	nalytical Met	hod: EPA 8260	0					
Acetone	ND	mg/kg	0.089	1		01/13/16 15:53	67-64-1	
Acrolein	ND	mg/kg	0.089	1		01/13/16 15:53	107-02-8	
Acrylonitrile	ND	mg/kg	0.089	1		01/13/16 15:53	107-13-1	
Benzene	ND	mg/kg	0.0045	1		01/13/16 15:53	71-43-2	
Bromobenzene	ND	mg/kg	0.0045	1		01/13/16 15:53	108-86-1	
Bromochloromethane	ND	mg/kg	0.0045	1		01/13/16 15:53	74-97-5	
Bromodichloromethane	ND	mg/kg	0.0045	1		01/13/16 15:53	75-27-4	
Bromoform	ND	mg/kg	0.0045	1		01/13/16 15:53	75-25-2	
Bromomethane	ND	mg/kg	0.0045	1		01/13/16 15:53	74-83-9	
2-Butanone (MEK)	ND	mg/kg	0.022	1		01/13/16 15:53	78-93-3	
n-Butylbenzene	ND	mg/kg	0.0045	1		01/13/16 15:53	104-51-8	
sec-Butylbenzene	ND	mg/kg	0.0045	1		01/13/16 15:53	135-98-8	
tert-Butylbenzene	ND	mg/kg	0.0045	1		01/13/16 15:53	98-06-6	
Carbon disulfide	ND	mg/kg	0.0089	1		01/13/16 15:53	75-15-0	
Carbon tetrachloride	ND	mg/kg	0.0045	1		01/13/16 15:53	56-23-5	
Chlorobenzene	ND	mg/kg	0.0045	1		01/13/16 15:53	108-90-7	
Chloroethane	ND	mg/kg	0.0045	1		01/13/16 15:53	75-00-3	
Chloroform	ND	mg/kg	0.0045	1		01/13/16 15:53	67-66-3	
Chloromethane	ND	mg/kg	0.0045	1		01/13/16 15:53	74-87-3	
2-Chlorotoluene	ND	mg/kg	0.0045	1		01/13/16 15:53	95-49-8	
4-Chlorotoluene	ND	mg/kg	0.0045	1		01/13/16 15:53	106-43-4	
Dibromochloromethane	ND	mg/kg	0.0045	1		01/13/16 15:53	124-48-1	
1,2-Dibromoethane (EDB)	ND	mg/kg	0.0045	1		01/13/16 15:53	106-93-4	

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

ANALYTICAL RESULTS

Project: Proposed Sonic 16IN0007

Pace Project No.: 50136269

Sample: B-1 (10-12)	Lab ID: 501	36269001	Collected: 01/11/1	6 10:45	Received: 0	1/11/16 14:25 N	Aatrix: Solid	
Results reported on a "dry weigh	nt" basis and are ad	iusted for pe	ed for percent moisture, sa		ze and any dil	y dilutions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5035A VOA	Analytical Met	nod: EPA 826	0					
Dibromomethane	ND	mg/kg	0.0045	1		01/13/16 15:53	74-95-3	
1,2-Dichlorobenzene	ND	mg/kg	0.0045	1		01/13/16 15:53	95-50-1	
1,3-Dichlorobenzene	ND	mg/kg	0.0045	1		01/13/16 15:53	541-73-1	
1,4-Dichlorobenzene	ND	mg/kg	0.0045	1		01/13/16 15:53	106-46-7	
trans-1,4-Dichloro-2-butene	ND	mg/kg	0.089	1		01/13/16 15:53	110-57-6	
Dichlorodifluoromethane	ND	mg/kg	0.0045	1		01/13/16 15:53	75-71-8	
1,1-Dichloroethane	ND	mg/kg	0.0045	1		01/13/16 15:53	75-34-3	
1,2-Dichloroethane	ND	mg/kg	0.0045	1		01/13/16 15:53	107-06-2	
1,1-Dichloroethene	ND	mg/kg	0.0045	1		01/13/16 15:53	75-35-4	
cis-1,2-Dichloroethene	ND	mg/kg	0.0045	1		01/13/16 15:53	156-59-2	
trans-1,2-Dichloroethene	ND	mg/kg	0.0045	1		01/13/16 15:53	156-60-5	
1,2-Dichloropropane	ND	mg/kg	0.0045	1		01/13/16 15:53	78-87-5	
1,3-Dichloropropane	ND	mg/kg	0.0045	1		01/13/16 15:53	142-28-9	
2,2-Dichloropropane	ND	mg/kg	0.0045	1		01/13/16 15:53	594-20-7	
1,1-Dichloropropene	ND	mg/kg	0.0045	1		01/13/16 15:53	563-58-6	
cis-1,3-Dichloropropene	ND	mg/kg	0.0045	1		01/13/16 15:53	10061-01-5	
trans-1,3-Dichloropropene	ND	mg/kg	0.0045	1		01/13/16 15:53	10061-02-6	
Ethylbenzene	ND	mg/kg	0.0045	1		01/13/16 15:53	100-41-4	
Ethyl methacrylate	ND	mg/kg	0.089	1		01/13/16 15:53	97-63-2	
Hexachloro-1,3-butadiene	ND	mg/kg	0.0045	1		01/13/16 15:53	87-68-3	
n-Hexane	ND	mg/kg	0.0045	1		01/13/16 15:53	110-54-3	
2-Hexanone	ND	mg/kg	0.089	1		01/13/16 15:53	591-78-6	
lodomethane	ND	mg/kg	0.089	1		01/13/16 15:53	74-88-4	
Isopropylbenzene (Cumene)	ND	mg/kg	0.0045	1		01/13/16 15:53	98-82-8	
p-Isopropyltoluene	ND	mg/kg	0.0045	1		01/13/16 15:53	99-87-6	
Methylene Chloride	ND	mg/kg	0.018	1		01/13/16 15:53	75-09-2	
1-Methylnaphthalene	ND	mg/kg	0.0089	1		01/13/16 15:53	90-12-0	N2
2-Methylnaphthalene	ND	mg/kg	0.0089	1		01/13/16 15:53	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	mg/kg	0.022	1		01/13/16 15:53	108-10-1	
Methyl-tert-butyl ether	ND	mg/kg	0.0045	1		01/13/16 15:53	1634-04-4	
Naphthalene	ND	mg/kg	0.0045	1		01/13/16 15:53	91-20-3	
n-Propylbenzene	ND	mg/kg	0.0045	1		01/13/16 15:53	103-65-1	
Styrene	ND	mg/kg	0.0045	1		01/13/16 15:53	100-42-5	
1,1,1,2-Tetrachloroethane	ND	mg/kg	0.0045	1		01/13/16 15:53	630-20-6	
1,1,2,2-Tetrachloroethane	ND	mg/kg	0.0045	1		01/13/16 15:53	79-34-5	
Tetrachloroethene	ND	mg/kg	0.0045	1		01/13/16 15:53	127-18-4	
Toluene	ND	mg/kg	0.0045	1		01/13/16 15:53	108-88-3	
1,2,3-Trichlorobenzene	ND	mg/kg	0.0045	1		01/13/16 15:53	87-61-6	
1,2,4-Trichlorobenzene	ND	mg/kg	0.0045	1		01/13/16 15:53	120-82-1	
1,1,1-Trichloroethane	ND	mg/kg	0.0045	1		01/13/16 15:53	71-55-6	
1,1,2-Trichloroethane	ND	mg/kg	0.0045	1		01/13/16 15:53	79-00-5	
Trichloroethene	ND	mg/kg	0.0045	1		01/13/16 15:53	79-01-6	
Trichlorofluoromethane	ND	mg/kg	0.0045	1		01/13/16 15:53	75-69-4	
1,2,3-Trichloropropane	ND	mg/kg	0.0045	1		01/13/16 15:53	96-18-4	
1,2,4-Trimethylbenzene	ND	mg/kg	0.0045	1		01/13/16 15:53	95-63-6	
1,3,5-Trimethylbenzene	ND	mg/kg	0.0045	1		01/13/16 15:53	108-67-8	

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

ANALYTICAL RESULTS

Project: Proposed Sonic 16IN0007

Pace Project No.: 50136269

Sample: B-1 (10-12)	Lab ID: 501	36269001	Collected: 01/11/1	6 10:45	Received: 0	1/11/16 14:25 N	latrix: Solid	
Results reported on a "dry weig	ht" basis and are ad	justed for per	cent moisture, sa	mple si	ze and any dil	utions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5035A VOA	Analytical Met	hod: EPA 8260)					
Vinyl acetate	ND	mg/kg	0.089	1		01/13/16 15:53	108-05-4	
Vinyl chloride	ND	mg/kg	0.0045	1		01/13/16 15:53	75-01-4	
Xylene (Total) Surrogates	ND	mg/kg	0.0089	1		01/13/16 15:53	1330-20-7	
Dibromofluoromethane (S)	107	%.	85-118	1		01/13/16 15:53	1868-53-7	
Toluene-d8 (S)	117	%.	71-128	1		01/13/16 15:53	2037-26-5	
4-Bromofluorobenzene (S)	57	%.	56-144	1		01/13/16 15:53	460-00-4	
Percent Moisture	Analytical Met	hod: SM 2540	G					
Percent Moisture	9.7	%	0.10	1		01/12/16 14:08		

ANALYTICAL RESULTS

Project: Proposed Sonic 16IN0007

Pace Project No.: 50136269

Sample: B-2 (9-11)	Lab ID: 501	36269002	Collected: 01/11/1	6 11:30	0 Received: 01	/11/16 14:25 N	1atrix: Solid	
Results reported on a "dry weig	ght" basis and are ad	justed for pe	rcent moisture, sa	mple s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV PAH by SIM	Analytical Met	hod: EPA 827	0 by SIM Preparat	ion Met	thod: EPA 3546			
Acenaphthene	ND	mg/kg	0.0061	1	01/12/16 13:00	01/13/16 02:54	83-32-9	
Acenaphthylene	ND	mg/kg	0.0061	1	01/12/16 13:00	01/13/16 02:54	208-96-8	
Anthracene	ND	mg/kg	0.0061	1	01/12/16 13:00	01/13/16 02:54	120-12-7	
Benzo(a)anthracene	ND	mg/kg	0.0061	1	01/12/16 13:00	01/13/16 02:54	56-55-3	
Benzo(a)pyrene	ND	mg/kg	0.0061	1	01/12/16 13:00	01/13/16 02:54	50-32-8	
Benzo(b)fluoranthene	ND	mg/kg	0.0061	1	01/12/16 13:00	01/13/16 02:54	205-99-2	
Benzo(g,h,i)perylene	ND	mg/kg	0.0061	1	01/12/16 13:00	01/13/16 02:54	191-24-2	
Benzo(k)fluoranthene	ND	mg/kg	0.0061	1	01/12/16 13:00	01/13/16 02:54	207-08-9	
Chrysene	ND	mg/kg	0.0061	1	01/12/16 13:00	01/13/16 02:54	218-01-9	
Dibenz(a,h)anthracene	ND	mg/kg	0.0061	1	01/12/16 13:00	01/13/16 02:54	53-70-3	
Fluoranthene	ND	mg/kg	0.0061	1	01/12/16 13:00	01/13/16 02:54	206-44-0	
Fluorene	ND	mg/kg	0.0061	1	01/12/16 13:00	01/13/16 02:54	86-73-7	
Indeno(1,2,3-cd)pyrene	ND	mg/kg	0.0061	1	01/12/16 13:00	01/13/16 02:54	193-39-5	
1-Methylnaphthalene	ND	mg/kg	0.0061	1	01/12/16 13:00	01/13/16 02:54	90-12-0	
2-Methylnaphthalene	ND	mg/kg	0.0061	1	01/12/16 13:00	01/13/16 02:54	91-57-6	
Naphthalene	ND	mg/kg	0.0061	1	01/12/16 13:00	01/13/16 02:54	91-20-3	
Phenanthrene	ND	ma/ka	0.0061	1	01/12/16 13:00	01/13/16 02:54	85-01-8	
Pvrene	ND	ma/ka	0.0061	1	01/12/16 13:00	01/13/16 02:54	129-00-0	
Surrogates		5 5						
2-Fluorobiphenyl (S)	66	%.	38-110	1	01/12/16 13:00	01/13/16 02:54	321-60-8	
p-Terphenyl-d14 (S)	64	%.	32-111	1	01/12/16 13:00	01/13/16 02:54	1718-51-0	
8260 MSV 5035A VOA	Analytical Mether	hod: EPA 826	0					
Acetone	ND	mg/kg	0.093	1		01/13/16 16:20	67-64-1	
Acrolein	ND	mg/kg	0.093	1		01/13/16 16:20	107-02-8	
Acrylonitrile	ND	mg/kg	0.093	1		01/13/16 16:20	107-13-1	
Benzene	ND	mg/kg	0.0047	1		01/13/16 16:20	71-43-2	
Bromobenzene	ND	mg/kg	0.0047	1		01/13/16 16:20	108-86-1	
Bromochloromethane	ND	mg/kg	0.0047	1		01/13/16 16:20	74-97-5	
Bromodichloromethane	ND	mg/kg	0.0047	1		01/13/16 16:20	75-27-4	
Bromoform	ND	mg/kg	0.0047	1		01/13/16 16:20	75-25-2	
Bromomethane	ND	mg/kg	0.0047	1		01/13/16 16:20	74-83-9	
2-Butanone (MEK)	ND	mg/kg	0.023	1		01/13/16 16:20	78-93-3	
n-Butylbenzene	ND	mg/kg	0.0047	1		01/13/16 16:20	104-51-8	
sec-Butylbenzene	ND	mg/kg	0.0047	1		01/13/16 16:20	135-98-8	
tert-Butylbenzene	ND	mg/kg	0.0047	1		01/13/16 16:20	98-06-6	
Carbon disulfide	ND	mg/kg	0.0093	1		01/13/16 16:20	75-15-0	
Carbon tetrachloride	ND	mg/kg	0.0047	1		01/13/16 16:20	56-23-5	
Chlorobenzene	ND	mg/kg	0.0047	1		01/13/16 16:20	108-90-7	
Chloroethane	ND	mg/kg	0.0047	1		01/13/16 16:20	75-00-3	
Chloroform	ND	mg/kg	0.0047	1		01/13/16 16:20	67-66-3	
Chloromethane	ND	mg/kg	0.0047	1		01/13/16 16:20	74-87-3	
2-Chlorotoluene	ND	mg/kg	0.0047	1		01/13/16 16:20	95-49-8	
4-Chlorotoluene	ND	mg/kg	0.0047	1		01/13/16 16:20	106-43-4	
Dibromochloromethane	ND	mg/kg	0.0047	1		01/13/16 16:20	124-48-1	
1,2-Dibromoethane (EDB)	ND	mg/kg	0.0047	1		01/13/16 16:20	106-93-4	

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

ANALYTICAL RESULTS

Project: Proposed Sonic 16IN0007

Pace Project No.: 50136269

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Prepared Analyzed CAS No. Qual 2820 MSV 5035A VOA Analytical Method: EPA 8260 <th>Sample: B-2 (9-11)</th> <th>Lab ID: 501</th> <th>36269002</th> <th>Collected: 01/11/1</th> <th>6 11:30</th> <th>Received: 0</th> <th>01/11/16 14:25 N</th> <th>Aatrix: Solid</th> <th></th>	Sample: B-2 (9-11)	Lab ID: 501	36269002	Collected: 01/11/1	6 11:30	Received: 0	01/11/16 14:25 N	Aatrix: Solid	
Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual B200 MSV 5035A VOA Analytical Method: EPA 8280	Results reported on a "dry weigh	t" basis and are adj	iusted for pe	rcent moisture, sa	mple si	ze and any dil	utions.		
Seed MSV 5035A VOA Analytical Method: EPA 8269 Dibromomethane ND mg/kg 0.0047 1 01/13/16 16.20 74-95-3 1,2-Dichlorobenzene ND mg/kg 0.0047 1 01/13/16 16.20 56-0-1 1,3-Dichlorobenzene ND mg/kg 0.0047 1 01/13/16 16.20 57-17-8 1,3-Dichlorobenzene ND mg/kg 0.0047 1 01/13/16 16.20 75-71-8 1,1-Dichloroethane ND mg/kg 0.0047 1 01/13/16 16.20 75-34-3 1,1-Dichloroethane ND mg/kg 0.0047 1 01/13/16 16.20 75-34-3 1,1-Dichloroethane ND mg/kg 0.0047 1 01/13/16 16.20 76-93-5 1,1-Dichloroethene ND mg/kg 0.0047 1 01/13/16 16.20 76-93-5 1,3-Dichloropropane ND mg/kg 0.0047 1 01/13/16 16.20 76-93-5 1,3-Dichloropropane ND mg/kg 0.0047 1 01/13/16 16.20	Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Dibomomethane ND mg/kg 0.0047 1 01/13/16 16:20 74-95-3 1.2-Dichlorobenzene ND mg/kg 0.0047 1 01/13/16 16:20 55-50-1 1.3-Dichlorobenzene ND mg/kg 0.0047 1 01/13/16 16:20 541-73-1 1.4-Dichlorobenzene ND mg/kg 0.0047 1 01/13/16 16:20 75-7-14 Dichlorodifluoromethane ND mg/kg 0.0047 1 01/13/16 16:20 75-7-18 1.1-Dichloroethane ND mg/kg 0.0047 1 01/13/16 16:20 75-34-3 1.2-Dichloroethane ND mg/kg 0.0047 1 01/13/16 16:20 156-69-2 1.3-Dichloroptopane ND mg/kg 0.0047 1 01/13/16 16:20 156-58-2 1.3-Dichloroptopane ND mg/kg 0.0047 1 01/13/16 16:20 156-56-5 1.3-Dichloroptopane ND mg/kg 0.0047 1 01/13/16 16:20 58-26-6 1.3-Dichloroptopane	8260 MSV 5035A VOA	Analytical Met	hod: EPA 826	0					
1.2-Dichlorobenzene ND mg/kg 0.0047 1 01/13/16 16:20 95-0-1 1.3-Dichlorobenzene ND mg/kg 0.0047 1 01/13/16 16:20 105-46 1.4-Dichlorobenzene ND mg/kg 0.0033 1 01/13/16 16:20 105-76 Dichlorodfluromethane ND mg/kg 0.0047 1 01/13/16 16:20 75-71-8 1.1-Dichloroethane ND mg/kg 0.0047 1 01/13/16 16:20 75-35-4 1.2-Dichloroethane ND mg/kg 0.0047 1 01/13/16 16:20 75-35-4 1.2-Dichloroethane ND mg/kg 0.0047 1 01/13/16 16:20 75-85-9 1.2-Dichloroptopane ND mg/kg 0.0047 1 01/13/16 16:20 75-85-9 1.2-Dichloroptopane ND mg/kg 0.0047 1 01/13/16 16:20 75-35-4 1.2-Dichloroptopene ND mg/kg 0.0047 1 01/13/16 16:20 75-35-4 1.2-Dichloroptopene	Dibromomethane	ND	mg/kg	0.0047	1		01/13/16 16:20	74-95-3	
1.3-Dichlorobenzene ND mg/kg 0.0047 1 01/13/16 16:20 54/73-1 1.4-Dichloro-2-butene ND mg/kg 0.0047 1 01/13/16 16:20 106-46-7 Insn:1.4-Dichloro-2-butene ND mg/kg 0.0047 1 01/13/16 16:20 75-71-8 Dichlorodthane ND mg/kg 0.0047 1 01/13/16 16:20 75-34-3 1.2-Dichloroethane ND mg/kg 0.0047 1 01/13/16 16:20 75-35-4 cis-1.2-Dichloroethane ND mg/kg 0.0047 1 01/13/16 16:20 75-85-4 cis-1.2-Dichloroethane ND mg/kg 0.0047 1 01/13/16 16:20 75-85-4 cis-1.2-Dichloroptopane ND mg/kg 0.0047 1 01/13/16 16:20 75-85-4 1.3-Dichloroptopane ND mg/kg 0.0047 1 01/13/16 16:20 75-85-4 1.3-Dichloroptopane ND mg/kg 0.0047 1 01/13/16 16:20 76-81-3 1.3-Dichloroptopane ND mg/kg 0.0047 1 01/13/16 16:20 106-10-5	1,2-Dichlorobenzene	ND	mg/kg	0.0047	1		01/13/16 16:20	95-50-1	
1.4-Dichlorobenzene ND mg/kg 0.0047 1 0.11/3/16 16:20 106:46-7 trans-1.4-Dichloro-2-butene ND mg/kg 0.0033 1 0.11/3/16 16:20 75-71-8 LinDichloroethane ND mg/kg 0.0047 1 0.11/3/16 16:20 75-71-8 1.1-Dichloroethane ND mg/kg 0.0047 1 0.11/3/16 16:20 75-71-8 1.1-Dichloroethane ND mg/kg 0.0047 1 0.11/3/16 16:20 156-56-2 1.1-Dichloroptopane ND mg/kg 0.0047 1 0.11/3/16 16:20 156-66-5 1.2-Dichloroptopane ND mg/kg 0.0047 1 0.11/3/16 16:20 168-28-5 2.2-Dichloroptopane ND mg/kg 0.0047 1 0.11/3/16 16:20 168-20-7 1.1-Dichloroptopene ND mg/kg 0.0047 1 0.11/3/16 16:20 168-20 2.2-Dichloroptopene ND mg/kg	1,3-Dichlorobenzene	ND	mg/kg	0.0047	1		01/13/16 16:20	541-73-1	
trans-1.4-Dichloro-2-butene ND mg/kg 0.093 1 0/11/3/16 16:20 75-76 Dichlorodifluoromethane ND mg/kg 0.0047 1 0/11/3/16 16:20 75-34-3 1.2-Dichloroethane ND mg/kg 0.0047 1 0/11/3/16 16:20 75-34-3 1.2-Dichloroethane ND mg/kg 0.0047 1 0/11/3/16 16:20 75-35-4 cis-1.2-Dichloroethane ND mg/kg 0.0047 1 0/11/3/16 16:20 78-37-5 1.3-Dichloropropane ND mg/kg 0.0047 1 0/11/3/16 16:20 97-63-2 Ethylbenzene ND mg/kg	1,4-Dichlorobenzene	ND	mg/kg	0.0047	1		01/13/16 16:20	106-46-7	
Dicktorodifiuoromethane ND mg/kg 0.0047 1 01/13/16 16.20 75-71-8 1,1-Dichtoroethane ND mg/kg 0.0047 1 01/13/16 16.20 75-34-3 1,2-Dichtoroethane ND mg/kg 0.0047 1 01/13/16 16.20 75-35-4 cis-1,2-Dichtoroethene ND mg/kg 0.0047 1 01/13/16 16.20 75-35-4 1,2-Dichtoroethene ND mg/kg 0.0047 1 01/13/16 16.20 76-35-4 1,2-Dichtoroptopane ND mg/kg 0.0047 1 01/13/16 16.20 76-37-5 1,3-Dichtoroptopane ND mg/kg 0.0047 1 01/13/16 16.20 160-10-5 2-Dichtoroptopane ND mg/kg 0.0047 1 01/13/16 16.20 10061-01-5 1,1-Dichtoroptopene ND mg/kg 0.0047 1 01/13/16 16.20 1061-01-5 Ethylabezane ND mg/kg <t< td=""><td>trans-1,4-Dichloro-2-butene</td><td>ND</td><td>mg/kg</td><td>0.093</td><td>1</td><td></td><td>01/13/16 16:20</td><td>110-57-6</td><td></td></t<>	trans-1,4-Dichloro-2-butene	ND	mg/kg	0.093	1		01/13/16 16:20	110-57-6	
1,1-Dichloroethane ND mg/kg 0.0047 1 01/13/16 16:20 75:34-3 1,2-Dichloroethane ND mg/kg 0.0047 1 01/13/16 16:20 75:35-4 cis-1,2-Dichloroethane ND mg/kg 0.0047 1 01/13/16 16:20 75:35-4 trans-1,2-Dichloroethane ND mg/kg 0.0047 1 01/13/16 16:20 75:35-4 1,2-Dichloroptopane ND mg/kg 0.0047 1 01/13/16 16:20 76:87-5 1,3-Dichloroptopane ND mg/kg 0.0047 1 01/13/16 16:20 76:87-5 1,3-Dichloroptopane ND mg/kg 0.0047 1 01/13/16 16:20 56:35:6-6 cis-1,3-Dichloroptopane ND mg/kg 0.0047 1 01/13/16 16:20 10:61:-02-6 trans-1,3-Dichloroptopene ND mg/kg 0.0047 1 01/13/16 16:20 10:61:-02-6 trans-1,3-Dichloroptopene ND mg/kg 0.0047 1 01/13/16 16:20 10:61:-02-6 trans-1,3-Dichloroptopene ND mg/kg 0.0047 1 01/13/16 1	Dichlorodifluoromethane	ND	mg/kg	0.0047	1		01/13/16 16:20	75-71-8	
1,2-Dichloroethane ND mg/kg 0.0047 1 01/13/16 16:20 107-06-2 1,1-Dichloroethene ND mg/kg 0.0047 1 01/13/16 16:20 75-35-4 cis-1,2-Dichloroethene ND mg/kg 0.0047 1 01/13/16 16:20 156-59-2 1,2-Dichloroptopane ND mg/kg 0.0047 1 01/13/16 16:20 168-60-5 1,3-Dichloroptopane ND mg/kg 0.0047 1 01/13/16 16:20 162-22-9 2,2-Dichloroptopane ND mg/kg 0.0047 1 01/13/16 16:20 162-28-9 1,1-Dichloroptopane ND mg/kg 0.0047 1 01/13/16 16:20 10061-01-5 Ltybischloroptopene ND mg/kg 0.0047 1 01/13/16 16:20 10061-02-6 Ethylbenzene ND mg/kg 0.0047 1 01/13/16 16:20 10061-02-6 Ethylbenzene ND mg/kg 0.0047 1 01/13/16 16:20 1063-3 I-Hexan Ore ND mg/kg 0.0047 1 01/13/16 16:20 10-84-3 <tr< td=""><td>1,1-Dichloroethane</td><td>ND</td><td>mg/kg</td><td>0.0047</td><td>1</td><td></td><td>01/13/16 16:20</td><td>75-34-3</td><td></td></tr<>	1,1-Dichloroethane	ND	mg/kg	0.0047	1		01/13/16 16:20	75-34-3	
1,1-Dichloroethene ND mg/kg 0.0047 1 01/13/16 16:20 75-35-4 cis-1,2-Dichloroethene ND mg/kg 0.0047 1 01/13/16 16:20 75-35-4 1,2-Dichloroethene ND mg/kg 0.0047 1 01/13/16 16:20 75-35-4 1,2-Dichloropropane ND mg/kg 0.0047 1 01/13/16 16:20 78-87-5 1,3-Dichloropropane ND mg/kg 0.0047 1 01/13/16 16:20 584-20-7 1,1-Dichloropropane ND mg/kg 0.0047 1 01/13/16 16:20 10061-01-5 2,2-Dichloropropane ND mg/kg 0.0047 1 01/13/16 16:20 10061-01-5 1,1-Dichloropropane ND mg/kg 0.0047 1 01/13/16 16:20 10041-4 Ethyl methacrylate ND mg/kg 0.0047 1 01/13/16 16:20 10-6-2 Ethyl methacrylate ND mg/kg 0.0047 1 01/13/16 16:20 10-4-3 2-Hexanone ND mg/kg 0.0047 1 01/13/16 16:20 10-4-3 <	1,2-Dichloroethane	ND	mg/kg	0.0047	1		01/13/16 16:20	107-06-2	
cis-1,2-Dichloroethene ND mg/kg 0.0047 1 01/13/16 16:20 156-59-2 trans-1,2-Dichloroethene ND mg/kg 0.0047 1 01/13/16 16:20 78-87-5 1,3-Dichloropropane ND mg/kg 0.0047 1 01/13/16 16:20 78-87-5 1,3-Dichloropropane ND mg/kg 0.0047 1 01/13/16 16:20 58-36-6 cis-1,3-Dichloropropene ND mg/kg 0.0047 1 01/13/16 16:20 10061-02-6 Ethyloenzene ND mg/kg 0.0047 1 01/13/16 16:20 10061-02-6 Ethyloenzene ND mg/kg 0.0047 1 01/13/16 16:20 100-41-4 Ethyloenzene ND mg/kg 0.0047 1 01/13/16 16:20 10-41-4 Ethyloenzene ND mg/kg 0.0047 1 01/13/16 16:20 10-54-3 2-Hexaone ND mg/kg 0.0033 1 01/13/16 16:20 10-54-3 2-Hexaone ND mg/k	1,1-Dichloroethene	ND	mg/kg	0.0047	1		01/13/16 16:20	75-35-4	
trans-1,2-Dichloroethene ND mg/kg 0.0047 1 01/13/16 16:20 156-60-5 1,2-Dichloropropane ND mg/kg 0.0047 1 01/13/16 16:20 78-87-5 1,3-Dichloropropane ND mg/kg 0.0047 1 01/13/16 16:20 142-28-9 2,2-Dichloropropane ND mg/kg 0.0047 1 01/13/16 16:20 594-20-7 1,1-Dichloropropene ND mg/kg 0.0047 1 01/13/16 16:20 10061-01-5 trans-1,3-Dichloropropene ND mg/kg 0.0047 1 01/13/16 16:20 10061-02-6 Ethyl instracylate ND mg/kg 0.0047 1 01/13/16 16:20 97-63-2 Hexachloro-1,3-butadiene ND mg/kg 0.0047 1 01/13/16 16:20 87-68-3 I-Hexano ND mg/kg 0.0047 1 01/13/16 16:20 594-78-6 Iodomethane ND mg/kg 0.0047 1 01/13/16 16:20 98-87-6 Iodomethane <t< td=""><td>cis-1,2-Dichloroethene</td><td>ND</td><td>mg/kg</td><td>0.0047</td><td>1</td><td></td><td>01/13/16 16:20</td><td>156-59-2</td><td></td></t<>	cis-1,2-Dichloroethene	ND	mg/kg	0.0047	1		01/13/16 16:20	156-59-2	
1,2-Dichloropropane ND mg/kg 0.0047 1 01/13/16 16:20 78-87-5 1,3-Dichloropropane ND mg/kg 0.0047 1 01/13/16 16:20 142-28-9 2,2-Dichloropropane ND mg/kg 0.0047 1 01/13/16 16:20 543-58-6 1,1-Dichloropropene ND mg/kg 0.0047 1 01/13/16 16:20 10061-01-5 trans-1,3-Dichloropropene ND mg/kg 0.0047 1 01/13/16 16:20 10061-02-6 Ethylenzene ND mg/kg 0.0047 1 01/13/16 16:20 97-63-2 Hexachloro-1,3-butadiene ND mg/kg 0.0047 1 01/13/16 16:20 97-63-2 Hexanone ND mg/kg 0.0047 1 01/13/16 16:20 97-63-2 -Hexano ND mg/kg 0.0047 1 01/13/16 16:20 97-63-2 -Hexanone ND mg/kg 0.0047 1 01/13/16 16:20 97-8-2 Isopropylbenzene (Cumene) ND mg/kg 0.0047 1 01/13/16 16:20 98-8-6 <t< td=""><td>trans-1,2-Dichloroethene</td><td>ND</td><td>mg/kg</td><td>0.0047</td><td>1</td><td></td><td>01/13/16 16:20</td><td>156-60-5</td><td></td></t<>	trans-1,2-Dichloroethene	ND	mg/kg	0.0047	1		01/13/16 16:20	156-60-5	
1.3-Dichloropropane ND mg/kg 0.0047 1 01/13/16 16:20 142-28-9 2.2-Dichloropropane ND mg/kg 0.0047 1 01/13/16 16:20 594-20-7 1.1-Dichloropropane ND mg/kg 0.0047 1 01/13/16 16:20 10061-01-5 cis-1.3-Dichloropropene ND mg/kg 0.0047 1 01/13/16 16:20 10061-02-6 Ethyl methacrylate ND mg/kg 0.0047 1 01/13/16 16:20 100-41-4 Ethyl methacrylate ND mg/kg 0.0047 1 01/13/16 16:20 87-68-3 Hexachloro-1,3-butadiene ND mg/kg 0.0047 1 01/13/16 16:20 74-88-4 Icdomethane ND mg/kg 0.093 1 01/13/16 16:20 74-88-4 Isopropylbenzene (Curene) ND mg/kg 0.0047 1 01/13/16 16:20 98-82-8 p-lsopropylbuene ND mg/kg 0.0047 1 01/13/16 16:20 90-12-0 N2 2-M	1,2-Dichloropropane	ND	mg/kg	0.0047	1		01/13/16 16:20	78-87-5	
2.2-Dichloropropane ND mg/kg 0.0047 1 01/13/16 16:20 594-20-7 1,1-Dichloropropene ND mg/kg 0.0047 1 01/13/16 16:20 563-58-6 cis-1,3-Dichloropropene ND mg/kg 0.0047 1 01/13/16 16:20 10061-01-5 Ethylbenzene ND mg/kg 0.0047 1 01/13/16 16:20 100-41-4 Ethylmethacrylate ND mg/kg 0.0047 1 01/13/16 16:20 100-41-4 Hexachloro-1,3-butadiene ND mg/kg 0.0047 1 01/13/16 16:20 10-54-3 2-Hexanone ND mg/kg 0.0047 1 01/13/16 16:20 51-78-6 Idodmethane ND mg/kg 0.0047 1 01/13/16 16:20 51-78-6 Idodmethane ND mg/kg 0.0047 1 01/13/16 16:20 98-87-8 Isopropyltoluene ND mg/kg 0.0047 1 01/13/16 16:20 98-76 Methyleapchloide ND mg	1.3-Dichloropropane	ND	ma/ka	0.0047	1		01/13/16 16:20	142-28-9	
1,1-Dichloropropene ND mg/kg 0.0047 1 01/13/16 16:20 563-58-6 cis-1,3-Dichloropropene ND mg/kg 0.0047 1 01/13/16 16:20 10061-01-5 trans-1,3-Dichloropropene ND mg/kg 0.0047 1 01/13/16 16:20 10061-02-6 Ethylbenzene ND mg/kg 0.0047 1 01/13/16 16:20 10-41-4 Ethyl methacrylate ND mg/kg 0.0047 1 01/13/16 16:20 87-68-3 Hexachloro-1,3-butadiene ND mg/kg 0.0047 1 01/13/16 16:20 97-63-2 Lexanone ND mg/kg 0.0047 1 01/13/16 16:20 591-78-6 Iodomethane ND mg/kg 0.093 1 01/13/16 16:20 98-82-8 J-lsopropylbenzene (Curnene) ND mg/kg 0.0047 1 01/13/16 16:20 99-87-6 Methylene Chloride ND mg/kg 0.0033 1 01/13/16 16:20 90-12-0 N2 2-Methylna	2.2-Dichloropropane	ND	ma/ka	0.0047	1		01/13/16 16:20	594-20-7	
cis-1,3-Dichloropropene ND mg/kg 0.0047 1 01/13/16 16:20 10061-01-5 trans-1,3-Dichloropropene ND mg/kg 0.0047 1 01/13/16 16:20 10061-02-6 Ethylbenzene ND mg/kg 0.0047 1 01/13/16 16:20 100-11-5 Ethyl methacrylate ND mg/kg 0.0033 1 01/13/16 16:20 87-68-3 Hexachloro-1,3-butadiene ND mg/kg 0.0047 1 01/13/16 16:20 87-68-3 n-Hexane ND mg/kg 0.0047 1 01/13/16 16:20 74-88-3 odomethane ND mg/kg 0.093 1 01/13/16 16:20 98-82-8 jespropylbenzene (Cumene) ND mg/kg 0.0047 1 01/13/16 16:20 98-82-8 jespropylbenzene (Cumene) ND mg/kg 0.0047 1 01/13/16 16:20 99-87-6 Methylene Chloride ND mg/kg 0.0033 1 01/13/16 16:20 99-87-6 4-Methyl-lerbutylabritalene </td <td>1.1-Dichloropropene</td> <td>ND</td> <td>ma/ka</td> <td>0.0047</td> <td>1</td> <td></td> <td>01/13/16 16:20</td> <td>563-58-6</td> <td></td>	1.1-Dichloropropene	ND	ma/ka	0.0047	1		01/13/16 16:20	563-58-6	
trans-1,3-Dichloropropene ND mg/kg 0.0047 1 01/13/16 16:20 10061-02-6 Ethylbenzene ND mg/kg 0.0047 1 01/13/16 16:20 100-41-4 Ethylmethacrylate ND mg/kg 0.0047 1 01/13/16 16:20 97-63-2 Hexachloro-1,3-butadiene ND mg/kg 0.0047 1 01/13/16 16:20 97-68-3 n-Hexane ND mg/kg 0.0047 1 01/13/16 16:20 97-68-3 2-Hexanone ND mg/kg 0.0033 1 01/13/16 16:20 98-87-6 Iodomethane ND mg/kg 0.0047 1 01/13/16 16:20 98-87-6 Isopropylbenzene (Cumene) ND mg/kg 0.0047 1 01/13/16 16:20 99-87-6 Methylene Chloride ND mg/kg 0.0033 1 01/13/16 16:20 19-17-7 1-Methylnaphthalene ND mg/kg 0.0033	cis-1.3-Dichloropropene	ND	ma/ka	0.0047	1		01/13/16 16:20	10061-01-5	
Ethylbenzene ND mg/kg 0.0047 1 01/13/16 16:20 100-41-4 Ethyl methacrylate ND mg/kg 0.093 1 01/13/16 16:20 97-63-2 Hexachloro-1,3-butadiene ND mg/kg 0.0047 1 01/13/16 16:20 87-68-3 n-Hexane ND mg/kg 0.093 1 01/13/16 16:20 591-78-6 Iodomethane ND mg/kg 0.093 1 01/13/16 16:20 98-82-8 Isopropylbenzene (Cumene) ND mg/kg 0.0047 1 01/13/16 16:20 98-82-8 P-lsopropylbenzene (Cumene) ND mg/kg 0.0047 1 01/13/16 16:20 98-82-8 Methylene Chloride ND mg/kg 0.0047 1 01/13/16 16:20 98-7-6 Hethylhaphthalene ND mg/kg 0.0033 1 01/13/16 16:20 99-87-6 4-Methyl-2-pentanone (MIBK) ND mg/kg 0.0033 1 01/13/16 16:20 90-12-0 N2 2-Methylnaphthalen	trans-1.3-Dichloropropene	ND	ma/ka	0.0047	1		01/13/16 16:20	10061-02-6	
Ethyl methacrylate ND mg/kg 0.093 1 01/13/16 16:20 97-63-2 Hexachloro-1,3-butadiene ND mg/kg 0.0047 1 01/13/16 16:20 87-68-3 n-Hexane ND mg/kg 0.0047 1 01/13/16 16:20 87-68-3 2-Hexanone ND mg/kg 0.093 1 01/13/16 16:20 74-88-4 Isopropylbenzene (Cumene) ND mg/kg 0.0047 1 01/13/16 16:20 98-82-8 p-Isopropylbenzene (Cumene) ND mg/kg 0.0047 1 01/13/16 16:20 99-87-6 Methylene Chloride ND mg/kg 0.0047 1 01/13/16 16:20 90-12-0 N2 2-Methylnaphthalene ND mg/kg 0.0033 1 01/13/16 16:20 91-57-6 4-Methyl-2-pentanone (MIBK) ND mg/kg 0.0047 1 01/13/16 16:20 91-20-3 n-Propylbenzene ND mg/	Ethvlbenzene	ND	ma/ka	0.0047	1		01/13/16 16:20	100-41-4	
Hexachloro-1,3-butadiene ND mg/kg 0.0047 1 01/13/16 16:20 87-68-3 n-Hexane ND mg/kg 0.093 1 01/13/16 16:20 591-78-6 lodomethane ND mg/kg 0.093 1 01/13/16 16:20 98-78-6 lodomethane ND mg/kg 0.0047 1 01/13/16 16:20 98-82-8 Jespropylbenzene (Cumene) ND mg/kg 0.0047 1 01/13/16 16:20 98-82-8 Jelsopropyltoluene ND mg/kg 0.0047 1 01/13/16 16:20 99-87-6 Methylene Chloride ND mg/kg 0.0047 1 01/13/16 16:20 90-12-0 N2 2-Methylnaphthalene ND mg/kg 0.0033 1 01/13/16 16:20 1634-04-4 Naphthalene ND mg/kg 0.0047 1 01/13/16 16:20 100-14 Methyl-zentatone (MIBK) ND mg/kg 0	Ethyl methacrylate	ND	ma/ka	0.093	1		01/13/16 16:20	97-63-2	
n-Hexane ND mg/kg 0.0047 1 01/13/16 16:20 110-54-3 2-Hexanone ND mg/kg 0.093 1 01/13/16 16:20 591-78-6 lodomethane ND mg/kg 0.093 1 01/13/16 16:20 74-88-4 Isopropylbenzene (Cumene) ND mg/kg 0.0047 1 01/13/16 16:20 98-82-8 p-Isopropylbenzene (Cumene) ND mg/kg 0.0047 1 01/13/16 16:20 98-82-8 hethylene Chloride ND mg/kg 0.0047 1 01/13/16 16:20 99-87-6 Methylene Chloride ND mg/kg 0.0093 1 01/13/16 16:20 99-87-6 1-Methylnaphthalene ND mg/kg 0.0093 1 01/13/16 16:20 90-12-0 N2 2-Methyl-2-pentanone (MIBK) ND mg/kg 0.003 1 01/13/16 16:20 108-10-1 Methyl-tert-butyl ether ND mg/kg 0.0047 1 01/13/16 16:20 108-40-4 Naphthalene	Hexachloro-1.3-butadiene	ND	ma/ka	0.0047	1		01/13/16 16:20	87-68-3	
2-Hexanone ND mg/kg 0.093 1 01/13/16 16:20 591-78-6 lodomethane ND mg/kg 0.093 1 01/13/16 16:20 591-78-6 lodomethane ND mg/kg 0.093 1 01/13/16 16:20 98-82-8 lsopropylbenzene (Cumene) ND mg/kg 0.0047 1 01/13/16 16:20 98-82-8 p-lsopropylbenzene (Cumene) ND mg/kg 0.0047 1 01/13/16 16:20 99-87-6 Methylene Chloride ND mg/kg 0.0093 1 01/13/16 16:20 90-12-0 N2 2-Methylnaphthalene ND mg/kg 0.0033 1 01/13/16 16:20 18-4-04-4 4-Methyl-2-pentanone (MIBK) ND mg/kg 0.0047 1 01/13/16 16:20 19-20-3 4-Methyl-tert-butyl ether ND mg/kg 0.0047 1 01/13/16 16:20 19-20-3 Styrene ND mg/kg	n-Hexane	ND	ma/ka	0.0047	1		01/13/16 16:20	110-54-3	
Iodomethane ND mg/kg 0.093 1 01/13/16 16:20 74-88-4 Isopropylbenzene (Cumene) ND mg/kg 0.0047 1 01/13/16 16:20 98-82-8 p-Isopropylboluene ND mg/kg 0.0047 1 01/13/16 16:20 99-87-6 Methylene Chloride ND mg/kg 0.019 1 01/13/16 16:20 90-12-0 N2 2-Methylnaphthalene ND mg/kg 0.0093 1 01/13/16 16:20 90-12-0 N2 2-Methylnaphthalene ND mg/kg 0.0093 1 01/13/16 16:20 91-57-6 4-Methyl-2-pentanone (MIBK) ND mg/kg 0.0023 1 01/13/16 16:20 108-10-1 Methyl-tert-butyl ether ND mg/kg 0.0047 1 01/13/16 16:20 108-44 Naphthalene ND mg/kg 0.0047 1 01/13/16 16:20 10-42-5 Styrene ND mg/kg 0.0047 1 01/13/16 16:20 100-42-5 1,1,1,	2-Hexanone	ND	ma/ka	0.093	1		01/13/16 16:20	591-78-6	
Isopropylbenzene (Cumene) ND mg/kg 0.0047 1 01/13/16 16:20 98-82-8 p-Isopropyltoluene ND mg/kg 0.0047 1 01/13/16 16:20 99-87-6 Methylene Chloride ND mg/kg 0.019 1 01/13/16 16:20 90-87-6 1-Methylnaphthalene ND mg/kg 0.0093 1 01/13/16 16:20 90-12-0 N2 2-Methylnaphthalene ND mg/kg 0.0093 1 01/13/16 16:20 91-57-6 4-Methyl-2-pentanone (MIBK) ND mg/kg 0.0023 1 01/13/16 16:20 91-57-6 Averthyl-tert-butyl ether ND mg/kg 0.0047 1 01/13/16 16:20 91-57-6 Naphthalene ND mg/kg 0.0047 1 01/13/16 16:20 91-20-3 n-Propylbenzene ND mg/kg 0.0047 1 01/13/16 16:20 100-42-5 1,1,1,2-Tetrachloroethane ND mg/kg 0.0047 1 01/13/16 16:20 100-42-5	lodomethane	ND	ma/ka	0.093	1		01/13/16 16:20	74-88-4	
p-Isopropyltoluene ND mg/kg 0.0047 1 01/13/16 16:20 99-87-6 Methylene Chloride ND mg/kg 0.019 1 01/13/16 16:20 99-87-6 1-Methylnaphthalene ND mg/kg 0.0093 1 01/13/16 16:20 90-12-0 N2 2-Methylnaphthalene ND mg/kg 0.0093 1 01/13/16 16:20 91-57-6 4-Methyl-2-pentanone (MIBK) ND mg/kg 0.023 1 01/13/16 16:20 108-10-1 Methyl-tert-butyl ether ND mg/kg 0.0047 1 01/13/16 16:20 1634-04-4 Naphthalene ND mg/kg 0.0047 1 01/13/16 16:20 103-65-1 Styrene ND mg/kg 0.0047 1 01/13/16 16:20 100-42-5 1,1,2-Tetrachloroethane ND mg/kg 0.0047 1 01/13/16 16:20 100-42-5 1,1,2-Z-Tetrachloroethane ND mg/kg 0.0047 1 01/13/16 16:20 79-34-5 Tetrachlo	Isopropylbenzene (Cumene)	ND	ma/ka	0.0047	1		01/13/16 16:20	98-82-8	
Methylene Chloride ND mg/kg 0.019 1 01/13/16 16:20 75-09-2 1-Methylnaphthalene ND mg/kg 0.093 1 01/13/16 16:20 90-12-0 N2 2-Methylnaphthalene ND mg/kg 0.093 1 01/13/16 16:20 91-57-6 4-Methyl-2-pentanone (MIBK) ND mg/kg 0.023 1 01/13/16 16:20 108-10-1 Methyl-tert-butyl ether ND mg/kg 0.0047 1 01/13/16 16:20 1634-04-4 Naphthalene ND mg/kg 0.0047 1 01/13/16 16:20 103-65-1 styrene ND mg/kg 0.0047 1 01/13/16 16:20 100-42-5 1,1,2-Tetrachloroethane ND mg/kg 0.0047 1 01/13/16 16:20 100-42-5 1,1,2-Tetrachloroethane ND mg/kg 0.0047 1 01/13/16 16:20 79-34-5 Tetrachloroethane ND mg/kg 0.0047 1 01/13/16 16:20 127-18-4 Toluene	p-Isopropyltoluene	ND	ma/ka	0.0047	1		01/13/16 16:20	99-87-6	
1-Methylnaphthalene ND mg/kg 0.0093 1 01/13/16 16:20 90-12-0 N2 2-Methylnaphthalene ND mg/kg 0.0093 1 01/13/16 16:20 91-57-6 4-Methyl-2-pentanone (MIBK) ND mg/kg 0.023 1 01/13/16 16:20 108-10-1 Methyl-tert-butyl ether ND mg/kg 0.0047 1 01/13/16 16:20 1634-04-4 Naphthalene ND mg/kg 0.0047 1 01/13/16 16:20 91-20-3 n-Propylbenzene ND mg/kg 0.0047 1 01/13/16 16:20 103-65-1 Styrene ND mg/kg 0.0047 1 01/13/16 16:20 100-42-5 1,1,2:2-Tetrachloroethane ND mg/kg 0.0047 1 01/13/16 16:20 630-20-6 1,1,2,2-Tetrachloroethane ND mg/kg 0.0047 1 01/13/16 16:20 79-34-5 Tetrachloroethane ND mg/kg 0.0047 1 01/13/16 16:20 127-18-4 Toluene ND mg/kg 0.0047 1 01/13/16 16:20 87-61-6	Methylene Chloride	ND	ma/ka	0.019	1		01/13/16 16:20	75-09-2	
2-Methylnaphthalene ND mg/kg 0.0093 1 01/13/16 16:20 91-57-6 4-Methyl-2-pentanone (MIBK) ND mg/kg 0.023 1 01/13/16 16:20 108-10-1 Methyl-tert-butyl ether ND mg/kg 0.0047 1 01/13/16 16:20 1634-04-4 Naphthalene ND mg/kg 0.0047 1 01/13/16 16:20 91-20-3 n-Propylbenzene ND mg/kg 0.0047 1 01/13/16 16:20 103-65-1 Styrene ND mg/kg 0.0047 1 01/13/16 16:20 100-42-5 1,1,2-Tetrachloroethane ND mg/kg 0.0047 1 01/13/16 16:20 630-20-6 1,1,2,2-Tetrachloroethane ND mg/kg 0.0047 1 01/13/16 16:20 79-34-5 Tetrachloroethane ND mg/kg 0.0047 1 01/13/16 16:20 127-18-4 Toluene ND mg/kg 0.0047 1 01/13/16 16:20 127-18-4 1,2,3-Trichlorobenzene </td <td>1-Methylnaphthalene</td> <td>ND</td> <td>ma/ka</td> <td>0.0093</td> <td>1</td> <td></td> <td>01/13/16 16:20</td> <td>90-12-0</td> <td>N2</td>	1-Methylnaphthalene	ND	ma/ka	0.0093	1		01/13/16 16:20	90-12-0	N2
4-Methyl-2-pentanone (MIBK) ND mg/kg 0.023 1 01/13/16 16:20 108-10-1 Methyl-tert-butyl ether ND mg/kg 0.0047 1 01/13/16 16:20 1634-04-4 Naphthalene ND mg/kg 0.0047 1 01/13/16 16:20 91-20-3 n-Propylbenzene ND mg/kg 0.0047 1 01/13/16 16:20 103-65-1 Styrene ND mg/kg 0.0047 1 01/13/16 16:20 100-42-5 1,1,2-Tetrachloroethane ND mg/kg 0.0047 1 01/13/16 16:20 630-20-6 1,1,2,2-Tetrachloroethane ND mg/kg 0.0047 1 01/13/16 16:20 79-34-5 Tetrachloroethane ND mg/kg 0.0047 1 01/13/16 16:20 127-18-4 Toluene ND mg/kg 0.0047 1 01/13/16 16:20 108-88-3 1,2,3-Trichlorobenzene ND mg/kg 0.0047 1 01/13/16 16:20 120-82-1 1,2,4-Trichlorobenzene ND mg/kg 0.0047 1 01/13/16 16:20 120-82-1	2-Methylnaphthalene	ND	ma/ka	0.0093	1		01/13/16 16:20	91-57-6	
Methyl-tert-butyl ether ND mg/kg 0.0047 1 01/13/16 16:20 1634-04-4 Naphthalene ND mg/kg 0.0047 1 01/13/16 16:20 91-20-3 n-Propylbenzene ND mg/kg 0.0047 1 01/13/16 16:20 103-65-1 Styrene ND mg/kg 0.0047 1 01/13/16 16:20 100-42-5 1,1,1,2-Tetrachloroethane ND mg/kg 0.0047 1 01/13/16 16:20 630-20-6 1,1,2,2-Tetrachloroethane ND mg/kg 0.0047 1 01/13/16 16:20 79-34-5 Tetrachloroethane ND mg/kg 0.0047 1 01/13/16 16:20 127-18-4 Toluene ND mg/kg 0.0047 1 01/13/16 16:20 128-83 1,2,3-Trichlorobenzene ND mg/kg 0.0047 1 01/13/16 16:20 188-83 1,2,4-Trichlorobenzene ND mg/kg 0.0047 1 01/13/16 16:20 120-82-1 1,1,1-Trichloroethane ND <td>4-Methyl-2-pentanone (MIBK)</td> <td>ND</td> <td>ma/ka</td> <td>0.023</td> <td>1</td> <td></td> <td>01/13/16 16:20</td> <td>108-10-1</td> <td></td>	4-Methyl-2-pentanone (MIBK)	ND	ma/ka	0.023	1		01/13/16 16:20	108-10-1	
Naphralene ND mg/kg 0.0047 1 01/13/16 16:20 91-20-3 n-Propylbenzene ND mg/kg 0.0047 1 01/13/16 16:20 103-65-1 Styrene ND mg/kg 0.0047 1 01/13/16 16:20 100-42-5 1,1,1,2-Tetrachloroethane ND mg/kg 0.0047 1 01/13/16 16:20 630-20-6 1,1,2,2-Tetrachloroethane ND mg/kg 0.0047 1 01/13/16 16:20 79-34-5 Tetrachloroethane ND mg/kg 0.0047 1 01/13/16 16:20 127-18-4 Toluene ND mg/kg 0.0047 1 01/13/16 16:20 127-18-4 Toluene ND mg/kg 0.0047 1 01/13/16 16:20 108-88-3 1,2,3-Trichlorobenzene ND mg/kg 0.0047 1 01/13/16 16:20 87-61-6 1,2,4-Trichlorobenzene ND mg/kg 0.0047 1 01/13/16 16:20 120-82-1 1,1,1-Trichloroethane ND	Methyl-tert-butyl ether	ND	mg/kg	0.0047	1		01/13/16 16:20	1634-04-4	
n-Propylbenzene ND mg/kg 0.0047 1 01/13/16 16:20 103-65-1 Styrene ND mg/kg 0.0047 1 01/13/16 16:20 100-42-5 1,1,1,2-Tetrachloroethane ND mg/kg 0.0047 1 01/13/16 16:20 630-20-6 1,1,2,2-Tetrachloroethane ND mg/kg 0.0047 1 01/13/16 16:20 79-34-5 Tetrachloroethane ND mg/kg 0.0047 1 01/13/16 16:20 127-18-4 Toluene ND mg/kg 0.0047 1 01/13/16 16:20 108-88-3 1,2,3-Trichlorobenzene ND mg/kg 0.0047 1 01/13/16 16:20 87-61-6 1,2,4-Trichlorobenzene ND mg/kg 0.0047 1 01/13/16 16:20 120-82-1 1,1,1-Trichlorobenzene ND mg/kg 0.0047 1 01/13/16 16:20 120-82-1 1,1,1-Trichloroethane ND mg/kg 0.0047 1 01/13/16 16:20 71-55-6	Naphthalene	ND	mg/kg	0.0047	1		01/13/16 16:20	91-20-3	
Styrene ND mg/kg 0.0047 1 01/13/16 16:20 100-42-5 1,1,1,2-Tetrachloroethane ND mg/kg 0.0047 1 01/13/16 16:20 630-20-6 1,1,2,2-Tetrachloroethane ND mg/kg 0.0047 1 01/13/16 16:20 79-34-5 Tetrachloroethane ND mg/kg 0.0047 1 01/13/16 16:20 127-18-4 Toluene ND mg/kg 0.0047 1 01/13/16 16:20 108-88-3 1,2,3-Trichlorobenzene ND mg/kg 0.0047 1 01/13/16 16:20 87-61-6 1,2,4-Trichlorobenzene ND mg/kg 0.0047 1 01/13/16 16:20 120-82-1 1,1,1-Trichlorobenzene ND mg/kg 0.0047 1 01/13/16 16:20 120-82-1 1,1,1-Trichloroethane ND mg/kg 0.0047 1 01/13/16 16:20 71-55-6	n-Propylbenzene	ND	mg/kg	0.0047	1		01/13/16 16:20	103-65-1	
1,1,2-TetrachloroethaneNDmg/kg0.0047101/13/16 16:20630-20-61,1,2,2-TetrachloroethaneNDmg/kg0.0047101/13/16 16:2079-34-5TetrachloroethaneNDmg/kg0.0047101/13/16 16:20127-18-4TolueneNDmg/kg0.0047101/13/16 16:20108-88-31,2,3-TrichlorobenzeneNDmg/kg0.0047101/13/16 16:2087-61-61,2,4-TrichlorobenzeneNDmg/kg0.0047101/13/16 16:20120-82-11,1,1-TrichloroethaneNDmg/kg0.0047101/13/16 16:2071-55-6	Styrene	ND	mg/kg	0.0047	1		01/13/16 16:20	100-42-5	
1,1,2,2-Tetrachloroethane ND mg/kg 0.0047 1 01/13/16 16:20 79-34-5 Tetrachloroethene ND mg/kg 0.0047 1 01/13/16 16:20 127-18-4 Toluene ND mg/kg 0.0047 1 01/13/16 16:20 127-18-4 1,2,3-Trichlorobenzene ND mg/kg 0.0047 1 01/13/16 16:20 108-88-3 1,2,4-Trichlorobenzene ND mg/kg 0.0047 1 01/13/16 16:20 87-61-6 1,2,4-Trichlorobenzene ND mg/kg 0.0047 1 01/13/16 16:20 120-82-1 1,1,1-Trichloroethane ND mg/kg 0.0047 1 01/13/16 16:20 71-55-6	1.1.1.2-Tetrachloroethane	ND	ma/ka	0.0047	1		01/13/16 16:20	630-20-6	
Tetrachloroethene ND mg/kg 0.0047 1 01/13/16 16:20 127-18-4 Toluene ND mg/kg 0.0047 1 01/13/16 16:20 108-88-3 1,2,3-Trichlorobenzene ND mg/kg 0.0047 1 01/13/16 16:20 87-61-6 1,2,4-Trichlorobenzene ND mg/kg 0.0047 1 01/13/16 16:20 120-82-1 1,1,1-Trichloroethane ND mg/kg 0.0047 1 01/13/16 16:20 120-82-1	1,1,2,2-Tetrachloroethane	ND	mg/kg	0.0047	1		01/13/16 16:20	79-34-5	
Toluene ND mg/kg 0.0047 1 01/13/16 16:20 108-88-3 1,2,3-Trichlorobenzene ND mg/kg 0.0047 1 01/13/16 16:20 87-61-6 1,2,4-Trichlorobenzene ND mg/kg 0.0047 1 01/13/16 16:20 87-61-6 1,1,1-Trichloroethane ND mg/kg 0.0047 1 01/13/16 16:20 120-82-1	Tetrachloroethene	ND	mg/kg	0.0047	1		01/13/16 16:20	127-18-4	
1,2,3-Trichlorobenzene ND mg/kg 0.0047 1 01/13/16 16:20 87-61-6 1,2,4-Trichlorobenzene ND mg/kg 0.0047 1 01/13/16 16:20 87-61-6 1,1,1-Trichloroethane ND mg/kg 0.0047 1 01/13/16 16:20 120-82-1	Toluene	ND	ma/ka	0.0047	1		01/13/16 16:20	108-88-3	
1,2,4-Trichlorobenzene ND mg/kg 0.0047 1 01/13/16 16:20 120-82-1 1,1,1-Trichloroethane ND mg/kg 0.0047 1 01/13/16 16:20 71-55-6	1.2.3-Trichlorobenzene	ND	ma/ka	0.0047	1		01/13/16 16:20	87-61-6	
1,1,1-Trichloroethane ND mg/kg 0.0047 1 01/13/16 16:20 71-55-6	1.2.4-Trichlorobenzene	ND	ma/ka	0.0047	1		01/13/16 16:20	120-82-1	
	1.1.1-Trichloroethane	ND	ma/ka	0.0047	1		01/13/16 16:20	71-55-6	
1.1.2-Trichloroethane ND mg/kg 0.0047 1 01/13/16.16:20.79-00-5	1.1.2-Trichloroethane	ND	ma/ka	0.0047	1		01/13/16 16:20	79-00-5	
Trichloroethene ND ma/kg 0.0047 1 01/13/16 16:20 79-01-6	Trichloroethene	ND	ma/ka	0.0047	1		01/13/16 16:20	79-01-6	
Trichlorofluoromethane ND mg/kg 0.0047 1 01/13/16 16:20 75-69-4	Trichlorofluoromethane	ND	ma/ka	0.0047	1		01/13/16 16:20	75-69-4	
1.2.3-Trichloropropane ND mg/kg 0.0047 1 01/13/16 16:20 96-18-4	1.2.3-Trichloropropage	ND	ma/ka	0 0047	1		01/13/16 16:20	96-18-4	
1.2.4-Trimethylbenzene ND ma/kg 0.0047 1 01/13/16 16:20 95-63-6	1.2.4-Trimethylbenzene	ND	mg/kg	0.0047	1		01/13/16 16:20	95-63-6	
1.3.5-Trimethylbenzene ND ma/kg 0.0047 1 01/13/16 16:20 108-67-8	1.3.5-Trimethylbenzene	ND	ma/ka	0.0047	1		01/13/16 16:20	108-67-8	

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

ANALYTICAL RESULTS

Project: Proposed Sonic 16IN0007

Pace Project No.: 50136269

Sample: B-2 (9-11)	Lab ID: 501	36269002	Collected: 01/11/1	6 11:30	Received: 0)1/11/16 14:25 N	latrix: Solid	
Results reported on a "dry weig	ht" basis and are ad	iusted for per	rcent moisture, sa	mple si	ize and any dill	utions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5035A VOA	Analytical Met	hod: EPA 8260)					
Vinyl acetate	ND	mg/kg	0.093	1		01/13/16 16:20	108-05-4	
Vinyl chloride	ND	mg/kg	0.0047	1		01/13/16 16:20	75-01-4	
Xylene (Total) <i>Surrogates</i>	ND	mg/kg	0.0093	1		01/13/16 16:20	1330-20-7	
Dibromofluoromethane (S)	105	%.	85-118	1		01/13/16 16:20	1868-53-7	
Toluene-d8 (S)	99	%.	71-128	1		01/13/16 16:20	2037-26-5	
4-Bromofluorobenzene (S)	73	%.	56-144	1		01/13/16 16:20	460-00-4	
Percent Moisture	Analytical Met	hod: SM 2540	G					
Percent Moisture	18.1	%	0.10	1		01/12/16 14:08		

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

ANALYTICAL RESULTS

Project: Proposed Sonic 16IN0007

Pace Project No.: 50136269

Sample: B-1 (10-20)	Lab ID: 5013	36269003	Collected: 01/11/1	6 11:00	Received: 01	/11/16 14:25 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV PAHLV	Analytical Meth	od: EPA 82	270 by SIM LVE Prep	aration	Method: EPA 35	10		
Acenaphthene	ND	ug/L	1.0	1	01/14/16 14:58	01/15/16 20:10	83-32-9	
Acenaphthylene	ND	ug/L	1.0	1	01/14/16 14:58	01/15/16 20:10	208-96-8	
Anthracene	ND	ug/L	0.10	1	01/14/16 14:58	01/15/16 20:10	120-12-7	
Benzo(a)anthracene	ND	ug/L	0.10	1	01/14/16 14:58	01/15/16 20:10	56-55-3	
Benzo(a)pyrene	ND	ug/L	0.10	1	01/14/16 14:58	01/15/16 20:10	50-32-8	
Benzo(b)fluoranthene	ND	ug/L	0.10	1	01/14/16 14:58	01/15/16 20:10	205-99-2	
Benzo(g,h,i)perylene	ND	ug/L	0.10	1	01/14/16 14:58	01/15/16 20:10	191-24-2	
Benzo(k)fluoranthene	ND	ug/L	0.10	1	01/14/16 14:58	01/15/16 20:10	207-08-9	
Chrysene	ND	ug/L	0.50	1	01/14/16 14:58	01/15/16 20:10	218-01-9	
Dibenz(a,h)anthracene	ND	ug/L	0.10	1	01/14/16 14:58	01/15/16 20:10	53-70-3	
Fluoranthene	ND	ug/L	1.0	1	01/14/16 14:58	01/15/16 20:10	206-44-0	
Fluorene	ND	ug/L	1.0	1	01/14/16 14:58	01/15/16 20:10	86-73-7	
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.10	1	01/14/16 14:58	01/15/16 20:10	193-39-5	
1-Methylnaphthalene	ND	ug/L	1.0	1	01/14/16 14:58	01/15/16 20:10	90-12-0	
2-Methylnaphthalene	ND	ug/L	1.0	1	01/14/16 14:58	01/15/16 20:10	91-57-6	
Naphthalene	ND	ug/L	1.0	1	01/14/16 14:58	01/15/16 20:10	91-20-3	
Phenanthrene	ND	ug/L	1.0	1	01/14/16 14:58	01/15/16 20:10	85-01-8	
Pyrene	ND	ug/L	1.0	1	01/14/16 14:58	01/15/16 20:10	129-00-0	
Surrogates		Ū						
2-Fluorobiphenyl (S)	79	%.	21-114	1	01/14/16 14:58	01/15/16 20:10	321-60-8	
p-Terphenyl-d14 (S)	106	%.	25-131	1	01/14/16 14:58	01/15/16 20:10	1718-51-0	
8260 MSV Indiana	Analytical Meth	od: EPA 82	260					
Acetone	ND	ug/L	100	1		01/16/16 04:02	67-64-1	
Acrolein	ND	ug/L	50.0	1		01/16/16 04:02	107-02-8	
Acrylonitrile	ND	ug/L	100	1		01/16/16 04:02	107-13-1	
Benzene	ND	ug/L	5.0	1		01/16/16 04:02	71-43-2	
Bromobenzene	ND	ug/L	5.0	1		01/16/16 04:02	108-86-1	
Bromochloromethane	ND	ug/L	5.0	1		01/16/16 04:02	74-97-5	
Bromodichloromethane	ND	ug/L	5.0	1		01/16/16 04:02	75-27-4	
Bromoform	ND	ug/L	5.0	1		01/16/16 04:02	75-25-2	
Bromomethane	ND	ug/L	5.0	1		01/16/16 04:02	74-83-9	
2-Butanone (MEK)	ND	ug/L	25.0	1		01/16/16 04:02	78-93-3	
n-Butylbenzene	ND	ug/L	5.0	1		01/16/16 04:02	104-51-8	
sec-Butylbenzene	ND	ug/L	5.0	1		01/16/16 04:02	135-98-8	
tert-Butylbenzene	ND	ug/L	5.0	1		01/16/16 04:02	98-06-6	
Carbon disulfide	ND	ug/L	10.0	1		01/16/16 04:02	75-15-0	
Carbon tetrachloride	ND	ug/L	5.0	1		01/16/16 04:02	56-23-5	
Chlorobenzene	ND	ug/L	5.0	1		01/16/16 04:02	108-90-7	
Chloroethane	ND	ug/L	5.0	1		01/16/16 04:02	75-00-3	
Chloroform	ND	ug/L	5.0	1		01/16/16 04:02	67-66-3	
Chloromethane	ND	ug/L	5.0	1		01/16/16 04:02	74-87-3	
2-Chlorotoluene	ND	ug/L	5.0	1		01/16/16 04:02	95-49-8	
4-Chlorotoluene	ND	ug/L	5.0	1		01/16/16 04:02	106-43-4	
Dibromochloromethane	ND	ug/L	5.0	1		01/16/16 04:02	124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	1		01/16/16 04:02	106-93-4	
Dibromomethane	ND	ug/L	5.0	1		01/16/16 04:02	74-95-3	

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

ANALYTICAL RESULTS

Project: Proposed Sonic 16IN0007

Pace Project No.: 50136269

Sample: B-1 (10-20)	Lab ID: 5013	36269003	Collected: 01/11/1	6 11:00	Received: 01/11/16	314:25 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared A	nalyzed	CAS No.	Qual
8260 MSV Indiana	Analytical Meth	od: EPA 82	260					
1,2-Dichlorobenzene	ND	ug/L	5.0	1	01/16	6/16 04:02	95-50-1	
1,3-Dichlorobenzene	ND	ug/L	5.0	1	01/16	6/16 04:02	541-73-1	
1,4-Dichlorobenzene	ND	ug/L	5.0	1	01/16	6/16 04:02	106-46-7	
trans-1,4-Dichloro-2-butene	ND	ug/L	100	1	01/16	6/16 04:02	110-57-6	
Dichlorodifluoromethane	ND	ug/L	5.0	1	01/16	6/16 04:02	75-71-8	
1,1-Dichloroethane	ND	ug/L	5.0	1	01/16	6/16 04:02	75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	1	01/16	6/16 04:02	107-06-2	
1,1-Dichloroethene	ND	ug/L	5.0	1	01/16	6/16 04:02	75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	5.0	1	01/16	6/16 04:02	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	5.0	1	01/16	6/16 04:02	156-60-5	
1,2-Dichloropropane	ND	ug/L	5.0	1	01/16	6/16 04:02	78-87-5	
1,3-Dichloropropane	ND	ug/L	5.0	1	01/16	6/16 04:02	142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	1	01/16	6/16 04:02	594-20-7	
1,1-Dichloropropene	ND	ug/L	5.0	1	01/16	6/16 04:02	563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	5.0	1	01/16	6/16 04:02	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	5.0	1	01/16	6/16 04:02	10061-02-6	
Ethylbenzene	ND	ug/L	5.0	1	01/16	6/16 04:02	100-41-4	
Ethyl methacrylate	ND	ug/L	100	1	01/16	6/16 04:02	97-63-2	
Hexachloro-1,3-butadiene	ND	ug/L	5.0	1	01/16	6/16 04:02	87-68-3	
n-Hexane	ND	ug/L	5.0	1	01/16	6/16 04:02	110-54-3	
2-Hexanone	ND	ug/L	25.0	1	01/16	6/16 04:02	591-78-6	
lodomethane	ND	ug/L	10.0	1	01/16	6/16 04:02	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	1	01/16	6/16 04:02	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	1	01/16	6/16 04:02	99-87-6	
Methylene Chloride	ND	ug/L	5.0	1	01/16	6/16 04:02	75-09-2	
1-Methylnaphthalene	ND	ug/L	5.0	1	01/16	6/16 04:02	90-12-0	N2
2-Methylnaphthalene	ND	ug/L	10.0	1	01/16	6/16 04:02	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	1	01/16	6/16 04:02	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	1	01/16	6/16 04:02	1634-04-4	
Naphthalene	ND	ug/L	1.7	1	01/16	6/16 04:02	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	1	01/16	6/16 04:02	103-65-1	
Styrene	ND	ug/L	5.0	1	01/16	6/16 04:02	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	1	01/16	6/16 04:02	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	1	01/16	6/16 04:02	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	1	01/16	6/16 04:02	127-18-4	
Toluene	ND	ug/L	5.0	1	01/16	6/16 04:02	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	1	01/16	6/16 04:02	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	1	01/16	6/16 04:02	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	1	01/16	6/16 04:02	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	1	01/16	6/16 04:02	79-00-5	
Trichloroethene	ND	ug/L	5.0	1	01/16	6/16 04:02	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	1	01/10	6/16 04:02	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	1	01/16	6/16 04:02	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	1	01/16	6/16 04:02	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	1	01/16	6/16 04:02	108-67-8	
Vinyl acetate	ND	uq/L	50.0	1	01/16	6/16 04:02	108-05-4	
Vinyl chloride	ND	ug/L	2.0	1	01/16	6/16 04:02	75-01-4	

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

ANALYTICAL RESULTS

Project: Proposed Sonic 16IN0007

Pace Project No.: 50136269

Sample: B-1 (10-20)	Lab ID: 501	36269003	Collected: 01/11/1	6 11:00	Received: 01	I/11/16 14:25 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Indiana	Analytical Met	hod: EPA 82	260					
Xylene (Total) Surrogates	ND	ug/L	10.0	1		01/16/16 04:02	1330-20-7	
Dibromofluoromethane (S)	95	%.	79-116	1		01/16/16 04:02	1868-53-7	
4-Bromofluorobenzene (S)	99	%.	80-114	1		01/16/16 04:02	460-00-4	
Toluene-d8 (S)	97	%.	81-110	1		01/16/16 04:02	2037-26-5	

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

ANALYTICAL RESULTS

Project: Proposed Sonic 16IN0007

Pace Project No.: 50136269

Sample: B-2 (6-16)	Lab ID: 5013	36269004	Collected: 01/11/1	6 11:50	Received: 01	/11/16 14:25 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV PAHLV	Analytical Meth	od: EPA 82	270 by SIM LVE Prep	paration	Method: EPA 35	10		
Acenaphthene	ND	ug/L	1.0	1	01/14/16 14:58	01/15/16 20:24	83-32-9	
Acenaphthylene	ND	ug/L	1.0	1	01/14/16 14:58	01/15/16 20:24	208-96-8	
Anthracene	ND	ug/L	0.10	1	01/14/16 14:58	01/15/16 20:24	120-12-7	
Benzo(a)anthracene	ND	ug/L	0.10	1	01/14/16 14:58	01/15/16 20:24	56-55-3	
Benzo(a)pyrene	ND	ug/L	0.10	1	01/14/16 14:58	01/15/16 20:24	50-32-8	
Benzo(b)fluoranthene	ND	ug/L	0.10	1	01/14/16 14:58	01/15/16 20:24	205-99-2	
Benzo(g,h,i)perylene	ND	ug/L	0.10	1	01/14/16 14:58	01/15/16 20:24	191-24-2	
Benzo(k)fluoranthene	ND	ug/L	0.10	1	01/14/16 14:58	01/15/16 20:24	207-08-9	
Chrysene	ND	ug/L	0.50	1	01/14/16 14:58	01/15/16 20:24	218-01-9	
Dibenz(a,h)anthracene	ND	ug/L	0.10	1	01/14/16 14:58	01/15/16 20:24	53-70-3	
Fluoranthene	ND	ug/L	1.0	1	01/14/16 14:58	01/15/16 20:24	206-44-0	
Fluorene	ND	ug/L	1.0	1	01/14/16 14:58	01/15/16 20:24	86-73-7	
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.10	1	01/14/16 14:58	01/15/16 20:24	193-39-5	
1-Methylnaphthalene	ND	ua/L	1.0	1	01/14/16 14:58	01/15/16 20:24	90-12-0	
2-Methylnaphthalene	ND	ug/L	1.0	1	01/14/16 14:58	01/15/16 20:24	91-57-6	
Naphthalene	ND	ug/L	1.0	1	01/14/16 14:58	01/15/16 20:24	91-20-3	
Phenanthrene	ND	ua/L	1.0	1	01/14/16 14:58	01/15/16 20:24	85-01-8	
Pvrene	ND	ua/L	1.0	1	01/14/16 14:58	01/15/16 20:24	129-00-0	
Surrogates		- U	-					
2-Fluorobiphenyl (S)	73	%.	21-114	1	01/14/16 14:58	01/15/16 20:24	321-60-8	
p-Terphenyl-d14 (S)	91	%.	25-131	1	01/14/16 14:58	01/15/16 20:24	1718-51-0	
8260 MSV Indiana	Analytical Meth	od: EPA 82	260					
Acetone	ND	ua/L	100	1		01/16/16 04:34	67-64-1	
Acrolein	ND	ug/L	50.0	1		01/16/16 04:34	107-02-8	
Acrylonitrile	ND	ug/L	100	1		01/16/16 04:34	107-13-1	
Benzene	ND	ug/L	5.0	1		01/16/16 04:34	71-43-2	
Bromobenzene	ND	ug/L	5.0	1		01/16/16 04:34	108-86-1	
Bromochloromethane	ND	ug/L	5.0	1		01/16/16 04:34	74-97-5	
Bromodichloromethane	ND	ug/L	5.0	1		01/16/16 04:34	75-27-4	
Bromoform	ND	ug/L	5.0	1		01/16/16 04:34	75-25-2	
Bromomethane	ND	ug/L	5.0	1		01/16/16 04:34	74-83-9	
2-Butanone (MEK)	ND	ug/L	25.0	1		01/16/16 04:34	78-93-3	
n-Butylbenzene	ND	ug/L	5.0	1		01/16/16 04:34	104-51-8	
sec-Butylbenzene	ND	ug/L	5.0	1		01/16/16 04:34	135-98-8	
tert-Butylbenzene	ND	ug/L	5.0	1		01/16/16 04:34	98-06-6	
Carbon disulfide	ND	ug/L	10.0	1		01/16/16 04:34	75-15-0	
Carbon tetrachloride	ND	ug/L	5.0	1		01/16/16 04:34	56-23-5	
Chlorobenzene	ND	ug/L	5.0	1		01/16/16 04:34	108-90-7	
Chloroethane	ND	ug/L	5.0	1		01/16/16 04:34	75-00-3	
Chloroform	ND	ug/L	5.0	1		01/16/16 04:34	67-66-3	
Chloromethane	ND	ug/L	5.0	1		01/16/16 04:34	74-87-3	
2-Chlorotoluene	ND	ug/L	5.0	1		01/16/16 04:34	95-49-8	
4-Chlorotoluene	ND	ug/L	5.0	1		01/16/16 04:34	106-43-4	
Dibromochloromethane	ND	ug/L	5.0	1		01/16/16 04:34	124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	1		01/16/16 04:34	106-93-4	
Dibromomethane	ND	ug/L	5.0	1		01/16/16 04:34	74-95-3	

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

ANALYTICAL RESULTS

Project: Proposed Sonic 16IN0007

Pace Project No.: 50136269

Sample: B-2 (6-16)	Lab ID: 501	36269004	Collected: 01/11/1	6 11:50	Received: 0'	I/11/16 14:25 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Indiana	Analytical Meth	nod: EPA 82	260					
1,2-Dichlorobenzene	ND	ug/L	5.0	1		01/16/16 04:34	95-50-1	
1,3-Dichlorobenzene	ND	ug/L	5.0	1		01/16/16 04:34	541-73-1	
1,4-Dichlorobenzene	ND	ug/L	5.0	1		01/16/16 04:34	106-46-7	
trans-1,4-Dichloro-2-butene	ND	ug/L	100	1		01/16/16 04:34	110-57-6	
Dichlorodifluoromethane	ND	ug/L	5.0	1		01/16/16 04:34	75-71-8	
1,1-Dichloroethane	ND	ug/L	5.0	1		01/16/16 04:34	75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	1		01/16/16 04:34	107-06-2	
1,1-Dichloroethene	ND	ug/L	5.0	1		01/16/16 04:34	75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	5.0	1		01/16/16 04:34	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	5.0	1		01/16/16 04:34	156-60-5	
1,2-Dichloropropane	ND	ug/L	5.0	1		01/16/16 04:34	78-87-5	
1,3-Dichloropropane	ND	ug/L	5.0	1		01/16/16 04:34	142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	1		01/16/16 04:34	594-20-7	
1,1-Dichloropropene	ND	ug/L	5.0	1		01/16/16 04:34	563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	5.0	1		01/16/16 04:34	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	5.0	1		01/16/16 04:34	10061-02-6	
Ethylbenzene	ND	ug/L	5.0	1		01/16/16 04:34	100-41-4	
Ethyl methacrylate	ND	ug/L	100	1		01/16/16 04:34	97-63-2	
Hexachloro-1,3-butadiene	ND	ug/L	5.0	1		01/16/16 04:34	87-68-3	
n-Hexane	ND	ug/L	5.0	1		01/16/16 04:34	110-54-3	
2-Hexanone	ND	ug/L	25.0	1		01/16/16 04:34	591-78-6	
lodomethane	ND	ug/L	10.0	1		01/16/16 04:34	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	1		01/16/16 04:34	98-82-8	
p-lsopropyltoluene	ND	ug/L	5.0	1		01/16/16 04:34	99-87-6	
Methylene Chloride	ND	ug/L	5.0	1		01/16/16 04:34	75-09-2	
1-Methylnaphthalene	ND	ug/L	5.0	1		01/16/16 04:34	90-12-0	N2
2-Methylnaphthalene	ND	ug/L	10.0	1		01/16/16 04:34	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	1		01/16/16 04:34	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	1		01/16/16 04:34	1634-04-4	
Naphthalene	ND	ug/L	1.7	1		01/16/16 04:34	91-20-3	
n-Propylbenzene	ND	ug/L	5.0	1		01/16/16 04:34	103-65-1	
Styrene	ND	ug/L	5.0	1		01/16/16 04:34	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	1		01/16/16 04:34	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	1		01/16/16 04:34	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	1		01/16/16 04:34	127-18-4	
Toluene	ND	ug/L	5.0	1		01/16/16 04:34	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	1		01/16/16 04:34	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	1		01/16/16 04:34	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	1		01/16/16 04:34	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	1		01/16/16 04:34	79-00-5	
Trichloroethene	ND	ug/L	5.0	1		01/16/16 04:34	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	1		01/16/16 04:34	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	1		01/16/16 04:34	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	1		01/16/16 04:34	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	1		01/16/16 04:34	108-67-8	
Vinyl acetate	ND	ug/L	50.0	1		01/16/16 04:34	108-05-4	
Vinyl chloride	ND	ug/L	2.0	1		01/16/16 04:34	75-01-4	

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

ANALYTICAL RESULTS

Project: Proposed Sonic 16IN0007

Pace Project No.: 50136269

Sample: B-2 (6-16)	Lab ID: 501	36269004	Collected: 01/11/1	6 11:50	Received: 01	/11/16 14:25 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Indiana	Analytical Meth	nod: EPA 82	260					
Xylene (Total)	ND	ug/L	10.0	1		01/16/16 04:34	1330-20-7	
Surrogates								
Dibromofluoromethane (S)	94	%.	79-116	1		01/16/16 04:34	1868-53-7	
4-Bromofluorobenzene (S)	100	%.	80-114	1		01/16/16 04:34	460-00-4	
Toluene-d8 (S)	99	%.	81-110	1		01/16/16 04:34	2037-26-5	

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

QUALITY CONTROL DATA

Project: Pr	oposed Sonic 16IN0007					
Pace Project No.: 50	136269					
OC Batch:	15\//85827	Analysis Meth	od. EE	24 8260		
OC Batch Mothod:			vintion: 22			
	FA 0200	Analysis Desc		00 1013 0		
Associated Lab Sample	es: 50136269003, 50136269004					
METHOD BLANK: 14	60580	Matrix:	Water			
Associated Lab Sample	es: 50136269003, 50136269004					
		Blank	Reporting			
Paramete	er Units	Result	Limit	Analyzed	Qualifiers	
1,1,1,2-Tetrachloroetha	ne ug/L	ND	5.0	01/16/16 03:30		
1,1,1-Trichloroethane	ug/L	ND	5.0	01/16/16 03:30		
1,1,2,2-Tetrachloroetha	ne ug/L	ND	5.0	01/16/16 03:30		
1,1,2-Trichloroethane	ug/L	ND	5.0	01/16/16 03:30		
1,1-Dichloroethane	ug/L	ND	5.0	01/16/16 03:30		
1,1-Dichloroethene	ug/L	ND	5.0	01/16/16 03:30		
1,1-Dichloropropene	ug/L	ND	5.0	01/16/16 03:30		
1,2,3-Trichlorobenzene	ug/L	ND	5.0	01/16/16 03:30		
1,2,3-Trichloropropane	ug/L	ND	5.0	01/16/16 03:30		
1,2,4-Trichlorobenzene	ug/L	ND	5.0	01/16/16 03:30		
1,2,4-Trimethylbenzene	e ug/L	ND	5.0	01/16/16 03:30		
1,2-Dibromoethane (ED	DB) ug/L	ND	5.0	01/16/16 03:30		
1,2-Dichlorobenzene	ug/L	ND	5.0	01/16/16 03:30		
1,2-Dichloroethane	ug/L	ND	5.0	01/16/16 03:30		
1,2-Dichloropropane	ug/L	ND	5.0	01/16/16 03:30		
1,3,5-Trimethylbenzene	e ug/L	ND	5.0	01/16/16 03:30		
1,3-Dichlorobenzene	ug/L	ND	5.0	01/16/16 03:30		
1,3-Dichloropropane	ug/L	ND	5.0	01/16/16 03:30		
1,4-Dichlorobenzene	ug/L	ND	5.0	01/16/16 03:30		
1-Methylnaphthalene	ug/L	ND	5.0	01/16/16 03:30	N2	
2,2-Dichloropropane	ug/L	ND	5.0	01/16/16 03:30		
2-Butanone (MEK)	ug/L	ND	25.0	01/16/16 03:30		
2-Chlorotoluene	ug/L	ND	5.0	01/16/16 03:30		
2-Hexanone	ug/L	ND	25.0	01/16/16 03:30		
2-Methylnaphthalene	ug/L	ND	10.0	01/16/16 03:30		
4-Chlorotoluene	ug/L	ND	5.0	01/16/16 03:30		
4-Methyl-2-pentanone (MIBK) ug/L	ND	25.0	01/16/16 03:30		
Acetone	ug/L	ND	100	01/16/16 03:30		
Acrolein	ug/L	ND	50.0	01/16/16 03:30		
Acrylonitrile	ug/L	ND	100	01/16/16 03:30		
Benzene	ug/L	ND	5.0	01/16/16 03:30		
Bromobenzene	ug/L	ND	5.0	01/16/16 03:30		
Bromochloromethane	ug/L	ND	5.0	01/16/16 03:30		
Bromodichloromethane	ug/L	ND	5.0	01/16/16 03:30		
Bromotorm	ug/L	ND	5.0	01/16/16 03:30		
Bromomethane	ug/L	ND	5.0	01/16/16 03:30		
Carbon disulfide	ug/L	ND	10.0	01/16/16 03:30		
Carbon tetrachloride	ug/L	ND	5.0	01/16/16 03:30		
Chloropenzene	ug/L	ND	5.0	01/10/16 03:30		
Chioroethane	UQ/L	ND	5.0	01/16/16 03:30		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

5.0 01/16/16 03:30

ND

ug/L

ug/L

REPORT OF LABORATORY ANALYSIS

Chloroform

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

QUALITY CONTROL DATA

Project: Proposed Sonic 16IN0007

Pace Project No.: 50136269

METHOD BLANK: 1460580	Matrix:	Water		
Associated Lab Samples: 50136269003, 50136269004				
Parameter Units	Blank Result	Blank Reporting Result Limit		Qualifiers
Chloromethane ug/L	ND	5.0	01/16/16 03:30	
cis-1,2-Dichloroethene ug/L	ND	5.0	01/16/16 03:30	
cis-1,3-Dichloropropene ug/L	ND	5.0	01/16/16 03:30	
Dibromochloromethane ug/L	ND	5.0	01/16/16 03:30	
Dibromomethane ug/L	ND	5.0	01/16/16 03:30	
Dichlorodifluoromethane ug/L	ND	5.0	01/16/16 03:30	
Ethyl methacrylate ug/L	ND	100	01/16/16 03:30	
Ethylbenzene ug/L	ND	5.0	01/16/16 03:30	
Hexachloro-1,3-butadiene ug/L	ND	5.0	01/16/16 03:30	
lodomethane ug/L	ND	10.0	01/16/16 03:30	
Isopropylbenzene (Cumene) ug/L	ND	5.0	01/16/16 03:30	
Methyl-tert-butyl ether ug/L	ND	4.0	01/16/16 03:30	
Methylene Chloride ug/L	ND	5.0	01/16/16 03:30	
n-Butylbenzene ug/L	ND	5.0	01/16/16 03:30	
n-Hexane ug/L	ND	5.0	01/16/16 03:30	
n-Propylbenzene ug/L	ND	5.0	01/16/16 03:30	
Naphthalene ug/L	ND	1.7	01/16/16 03:30	
p-Isopropyltoluene ug/L	ND	5.0	01/16/16 03:30	
sec-Butylbenzene ug/L	ND	5.0	01/16/16 03:30	
Styrene ug/L	ND	5.0	01/16/16 03:30	
tert-Butylbenzene ug/L	ND	5.0	01/16/16 03:30	
Tetrachloroethene ug/L	ND	5.0	01/16/16 03:30	
Toluene ug/L	ND	5.0	01/16/16 03:30	
trans-1,2-Dichloroethene ug/L	ND	5.0	01/16/16 03:30	
trans-1,3-Dichloropropene ug/L	ND	5.0	01/16/16 03:30	
trans-1,4-Dichloro-2-butene ug/L	ND	100	01/16/16 03:30	
Trichloroethene ug/L	ND	5.0	01/16/16 03:30	
Trichlorofluoromethane ug/L	ND	5.0	01/16/16 03:30	
Vinyl acetate ug/L	ND	50.0	01/16/16 03:30	
Vinyl chloride ug/L	ND	2.0	01/16/16 03:30	
Xylene (Total) ug/L	ND	10.0	01/16/16 03:30	
4-Bromofluorobenzene (S) %.	99	80-114	01/16/16 03:30	
Dibromofluoromethane (S) %.	96	79-116	01/16/16 03:30	
Toluene-d8 (S) %.	101	81-110	01/16/16 03:30	

LABORATORY CONTROL SAMPLE: 1460581

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/L		43.6	87	71-129	
1,1,2,2-Tetrachloroethane	ug/L	50	45.3	91	66-126	
1,1-Dichloroethene	ug/L	50	45.5	91	68-127	
1,2,4-Trimethylbenzene	ug/L	50	42.0	84	69-127	
1,2-Dichloropropane	ug/L	50	45.8	92	74-121	
Benzene	ug/L	50	45.8	92	74-122	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

QUALITY CONTROL DATA

Project: Proposed Sonic 16IN0007

Pace Project No.: 50136269

LABORATORY CONTROL SAMPLE: 1460581

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chlorobenzene	ug/L		44.1	88	78-123	
Chloroform	ug/L	50	43.4	87	78-126	
cis-1,2-Dichloroethene	ug/L	50	44.5	89	75-122	
Ethylbenzene	ug/L	50	45.6	91	66-133	
Isopropylbenzene (Cumene)	ug/L	50	46.2	92	69-124	
Methyl-tert-butyl ether	ug/L	50	42.5	85	69-122	
Naphthalene	ug/L	50	44.5	89	68-127	
Tetrachloroethene	ug/L	50	43.5	87	69-130	
Toluene	ug/L	50	42.4	85	72-122	
trans-1,2-Dichloroethene	ug/L	50	45.1	90	72-124	
Trichloroethene	ug/L	50	47.3	95	76-126	
Vinyl chloride	ug/L	50	39.2	78	59-126	
Xylene (Total)	ug/L	150	134	89	70-124	
4-Bromofluorobenzene (S)	%.			101	80-114	
Dibromofluoromethane (S)	%.			97	79-116	
Toluene-d8 (S)	%.			97	81-110	

MATRIX SPIKE & MATRIX SPI	KE DUPLIC	ATE: 14618	87		1461888							
			MS	MSD								
	:	50136269003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,1,1-Trichloroethane	ug/L	ND	50	50	39.6	37.0	79	74	60-138	7	20	
1,1,2,2-Tetrachloroethane	ug/L	ND	50	50	45.8	45.1	92	90	55-128	1	20	
1,1-Dichloroethene	ug/L	ND	50	50	42.3	43.5	85	87	55-145	3	20	
1,2,4-Trimethylbenzene	ug/L	ND	50	50	17.8	19.5	36	39	18-149	9	20	
1,2-Dichloropropane	ug/L	ND	50	50	43.6	42.7	87	85	59-130	2	20	
Benzene	ug/L	ND	50	50	39.4	39.4	79	79	62-129	0	20	
Chlorobenzene	ug/L	ND	50	50	28.5	26.7	57	53	49-136	6	20	
Chloroform	ug/L	ND	50	50	41.4	40.0	83	80	54-150	3	20	
cis-1,2-Dichloroethene	ug/L	ND	50	50	41.3	42.0	83	84	60-135	2	20	
Ethylbenzene	ug/L	ND	50	50	25.0	25.0	50	50	28-153	0	20	
Isopropylbenzene (Cumene)	ug/L	ND	50	50	20.4	19.2	41	38	18-152	6	20	
Methyl-tert-butyl ether	ug/L	ND	50	50	46.3	46.0	93	92	63-130	1	20	
Naphthalene	ug/L	ND	50	50	37.1	50.8	74	102	39-140	31	20	R1
Tetrachloroethene	ug/L	ND	50	50	25.9	25.0	52	50	33-151	3	20	
Toluene	ug/L	ND	50	50	30.7	28.7	61	57	50-132	7	20	
trans-1,2-Dichloroethene	ug/L	ND	50	50	39.8	38.5	80	77	40-153	3	20	
Trichloroethene	ug/L	ND	50	50	35.3	35.1	71	70	50-143	1	20	
Vinyl chloride	ug/L	ND	50	50	41.2	36.8	82	74	44-145	11	20	
Xylene (Total)	ug/L	ND	150	150	72.2	66.2	48	44	29-145	9	20	
4-Bromofluorobenzene (S)	%.						101	103	80-114			
Dibromofluoromethane (S)	%.						96	93	79-116			
Toluene-d8 (S)	%.						101	98	81-110			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

QUALITY CONTROL DATA

Project: Proposed Sonic 16IN0007

Pace Project No.: 50136269

QC Batch Method: EPA 8260 Analysis Description: 8260 MSV 5035A Volatile Organics Associated Lab Samples: 50136269001, 50136269002 Solution: 8260 MSV 5035A Volatile Organics	QC Batch:	MSV/85822	Analysis Method:	EPA 8260	
Associated Lab Samples: 50136269001, 50136269002	QC Batch Method:	EPA 8260	Analysis Description:	8260 MSV 5035A Volatile Organics	
	Associated Lab Samp	bles: 50136269001, 50136269002			

Matrix: Solid

METHOD BLANK: 1460538

Associated Lab Samples: 50136269001, 50136269002

	,	Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1.1.1.2-Tetrachloroethane	ma/ka		0.0050	01/13/16 15:25	
1,1,1-Trichloroethane	mg/kg	ND	0.0050	01/13/16 15:25	
1.1.2.2-Tetrachloroethane	ma/ka	ND	0.0050	01/13/16 15:25	
1.1.2-Trichloroethane	ma/ka	ND	0.0050	01/13/16 15:25	
1.1-Dichloroethane	ma/ka	ND	0.0050	01/13/16 15:25	
1.1-Dichloroethene	ma/ka	ND	0.0050	01/13/16 15:25	
1.1-Dichloropropene	ma/ka	ND	0.0050	01/13/16 15:25	
1,2,3-Trichlorobenzene	mg/kg	ND	0.0050	01/13/16 15:25	
1.2.3-Trichloropropane	ma/ka	ND	0.0050	01/13/16 15:25	
1.2.4-Trichlorobenzene	ma/ka	ND	0.0050	01/13/16 15:25	
1.2.4-Trimethylbenzene	ma/ka	ND	0.0050	01/13/16 15:25	
1,2-Dibromoethane (EDB)	mg/kg	ND	0.0050	01/13/16 15:25	
1,2-Dichlorobenzene	mg/kg	ND	0.0050	01/13/16 15:25	
1,2-Dichloroethane	mg/kg	ND	0.0050	01/13/16 15:25	
1,2-Dichloropropane	mg/kg	ND	0.0050	01/13/16 15:25	
1,3,5-Trimethylbenzene	mg/kg	ND	0.0050	01/13/16 15:25	
1,3-Dichlorobenzene	mg/kg	ND	0.0050	01/13/16 15:25	
1,3-Dichloropropane	mg/kg	ND	0.0050	01/13/16 15:25	
1,4-Dichlorobenzene	mg/kg	ND	0.0050	01/13/16 15:25	
1-Methylnaphthalene	mg/kg	ND	0.010	01/13/16 15:25	N2
2,2-Dichloropropane	mg/kg	ND	0.0050	01/13/16 15:25	
2-Butanone (MEK)	mg/kg	ND	0.025	01/13/16 15:25	
2-Chlorotoluene	mg/kg	ND	0.0050	01/13/16 15:25	
2-Hexanone	mg/kg	ND	0.10	01/13/16 15:25	
2-Methylnaphthalene	mg/kg	ND	0.010	01/13/16 15:25	
1-Chlorotoluene	mg/kg	ND	0.0050	01/13/16 15:25	
1-Methyl-2-pentanone (MIBK)	mg/kg	ND	0.025	01/13/16 15:25	
Acetone	mg/kg	ND	0.10	01/13/16 15:25	
Acrolein	mg/kg	ND	0.10	01/13/16 15:25	
Acrylonitrile	mg/kg	ND	0.10	01/13/16 15:25	
Benzene	mg/kg	ND	0.0050	01/13/16 15:25	
Bromobenzene	mg/kg	ND	0.0050	01/13/16 15:25	
Bromochloromethane	mg/kg	ND	0.0050	01/13/16 15:25	
Bromodichloromethane	mg/kg	ND	0.0050	01/13/16 15:25	
Bromoform	mg/kg	ND	0.0050	01/13/16 15:25	
Bromomethane	mg/kg	ND	0.0050	01/13/16 15:25	
Carbon disulfide	mg/kg	ND	0.010	01/13/16 15:25	
Carbon tetrachloride	mg/kg	ND	0.0050	01/13/16 15:25	
Chlorobenzene	mg/kg	ND	0.0050	01/13/16 15:25	
Chloroethane	mg/kg	ND	0.0050	01/13/16 15:25	
Chloroform	mg/kg	ND	0.0050	01/13/16 15:25	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

QUALITY CONTROL DATA

Project:Proposed Sonic 16IN0007Pace Project No.:50136269

METHOD BLANK: 146053	8	Matrix:	Solid		
Associated Lab Samples:	50136269001, 50136269002				
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Chloromethane	mg/kg	ND	0.0050	01/13/16 15:25	
cis-1,2-Dichloroethene	mg/kg	ND	0.0050	01/13/16 15:25	
cis-1,3-Dichloropropene	mg/kg	ND	0.0050	01/13/16 15:25	
Dibromochloromethane	mg/kg	ND	0.0050	01/13/16 15:25	
Dibromomethane	mg/kg	ND	0.0050	01/13/16 15:25	
Dichlorodifluoromethane	mg/kg	ND	0.0050	01/13/16 15:25	
Ethyl methacrylate	mg/kg	ND	0.10	01/13/16 15:25	
Ethylbenzene	mg/kg	ND	0.0050	01/13/16 15:25	
Hexachloro-1,3-butadiene	mg/kg	ND	0.0050	01/13/16 15:25	
lodomethane	mg/kg	ND	0.10	01/13/16 15:25	
Isopropylbenzene (Cumene)	mg/kg	ND	0.0050	01/13/16 15:25	
Methyl-tert-butyl ether	mg/kg	ND	0.0050	01/13/16 15:25	
Methylene Chloride	mg/kg	ND	0.020	01/13/16 15:25	
n-Butylbenzene	mg/kg	ND	0.0050	01/13/16 15:25	
n-Hexane	mg/kg	ND	0.0050	01/13/16 15:25	
n-Propylbenzene	mg/kg	ND	0.0050	01/13/16 15:25	
Naphthalene	mg/kg	ND	0.0050	01/13/16 15:25	
p-Isopropyltoluene	mg/kg	ND	0.0050	01/13/16 15:25	
sec-Butylbenzene	mg/kg	ND	0.0050	01/13/16 15:25	
Styrene	mg/kg	ND	0.0050	01/13/16 15:25	
tert-Butylbenzene	mg/kg	ND	0.0050	01/13/16 15:25	
Tetrachloroethene	mg/kg	ND	0.0050	01/13/16 15:25	
Toluene	mg/kg	ND	0.0050	01/13/16 15:25	
trans-1,2-Dichloroethene	mg/kg	ND	0.0050	01/13/16 15:25	
trans-1,3-Dichloropropene	mg/kg	ND	0.0050	01/13/16 15:25	
trans-1,4-Dichloro-2-butene	mg/kg	ND	0.10	01/13/16 15:25	
Trichloroethene	mg/kg	ND	0.0050	01/13/16 15:25	
Trichlorofluoromethane	mg/kg	ND	0.0050	01/13/16 15:25	
Vinyl acetate	mg/kg	ND	0.10	01/13/16 15:25	
Vinyl chloride	mg/kg	ND	0.0050	01/13/16 15:25	
Xylene (Total)	mg/kg	ND	0.010	01/13/16 15:25	
4-Bromofluorobenzene (S)	%.	84	56-144	01/13/16 15:25	
Dibromofluoromethane (S)	%.	103	85-118	01/13/16 15:25	
Toluene-d8 (S)	%.	89	71-128	01/13/16 15:25	

LABORATORY CONTROL SAMPLE: 1460539

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	mg/kg	.05	0.052	103	70-123	
1,1,2,2-Tetrachloroethane	mg/kg	.05	0.051	102	65-124	
1,1-Dichloroethene	mg/kg	.05	0.058	116	66-126	
1,2,4-Trimethylbenzene	mg/kg	.05	0.054	108	67-126	
1,2-Dichloropropane	mg/kg	.05	0.051	101	75-118	
Benzene	mg/kg	.05	0.055	110	74-119	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

QUALITY CONTROL DATA

Project: Proposed Sonic 16IN0007

Pace Project No.: 50136269

LABORATORY CONTROL SAMPLE: 1460539

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chlorobenzene	mg/kg	.05	0.049	97	77-122	
Chloroform	mg/kg	.05	0.050	100	75-124	
cis-1,2-Dichloroethene	mg/kg	.05	0.055	111	72-122	
Ethylbenzene	mg/kg	.05	0.057	113	72-123	
Isopropylbenzene (Cumene)	mg/kg	.05	0.055	109	65-123	
Methyl-tert-butyl ether	mg/kg	.05	0.055	110	68-120	
Naphthalene	mg/kg	.05	0.061	122	67-131	
Tetrachloroethene	mg/kg	.05	0.043	86	72-126	
Toluene	mg/kg	.05	0.052	103	71-121	
trans-1,2-Dichloroethene	mg/kg	.05	0.056	113	69-123	
Trichloroethene	mg/kg	.05	0.057	113	74-123	
Vinyl chloride	mg/kg	.05	0.053	107	55-128	
Xylene (Total)	mg/kg	.15	0.17	113	66-124	
4-Bromofluorobenzene (S)	%.			96	56-144	
Dibromofluoromethane (S)	%.			99	85-118	
Toluene-d8 (S)	%.			94	71-128	

MATRIX SPIKE & MATRIX SPI	KE DUPLICA	ATE: 14606	05		1460606							
			MS	MSD								
	5	0136063002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,1,1-Trichloroethane	mg/kg	ND	.042	.043	0.042	0.043	102	101	26-143	1	20	
1,1,2,2-Tetrachloroethane	mg/kg	ND	.042	.043	0.046	0.044	111	102	10-156	5	20	
1,1-Dichloroethene	mg/kg	ND	.042	.043	0.048	0.049	116	115	31-146	2	20	
1,2,4-Trimethylbenzene	mg/kg	ND	.042	.043	0.049	0.044	119	102	10-139	12	20	
1,2-Dichloropropane	mg/kg	ND	.042	.043	0.042	0.043	102	101	29-135	3	20	
Benzene	mg/kg	ND	.042	.043	0.043	0.045	105	104	27-140	3	20	
Chlorobenzene	mg/kg	ND	.042	.043	0.039	0.039	95	92	10-136	1	20	
Chloroform	mg/kg	ND	.042	.043	0.040	0.041	98	96	36-138	1	20	
cis-1,2-Dichloroethene	mg/kg	ND	.042	.043	0.045	0.047	110	110	29-136	3	20	
Ethylbenzene	mg/kg	ND	.042	.043	0.045	0.045	109	106	10-144	1	20	
Isopropylbenzene (Cumene)	mg/kg	ND	.042	.043	0.044	0.042	106	97	10-134	5	20	
Methyl-tert-butyl ether	mg/kg	ND	.042	.043	0.049	0.051	118	118	30-147	4	20	
Naphthalene	mg/kg	ND	.042	.043	0.023	0.029	56	67	10-130	21	20	R1
Tetrachloroethene	mg/kg	ND	.042	.043	0.035	0.033	84	77	10-153	6	20	
Toluene	mg/kg	ND	.042	.043	0.041	0.040	98	93	10-140	2	20	
trans-1,2-Dichloroethene	mg/kg	ND	.042	.043	0.045	0.046	109	108	28-139	3	20	
Trichloroethene	mg/kg	ND	.042	.043	0.043	0.045	105	105	17-148	3	20	
Vinyl chloride	mg/kg	ND	.042	.043	0.045	0.047	109	111	30-145	5	20	
Xylene (Total)	mg/kg	ND	.12	.13	0.13	0.13	108	102	10-143	3	20	
4-Bromofluorobenzene (S)	%.						91	90	56-144			
Dibromofluoromethane (S)	%.						97	99	85-118			
Toluene-d8 (S)	%.						100	95	71-128			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

QUALITY CONTROL DATA

Project: Proposed Sonic 16IN0007

Pace Project No.: 50136269

QC Batch:	OEXT/42094	Analysis Method:	EPA 8270 by SIM LVE
QC Batch Method:	EPA 3510	Analysis Description:	8270 Water PAH LV by SIM MSSV
Associated Lab Sam	bles: 50136269003, 50136269004		
METHOD BLANK:	1461004	Matrix: Water	

Associated Lab Samples: 50136269003, 50136269004

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1-Methylnaphthalene	ug/L	ND	1.0	01/15/16 19:44	
2-Methylnaphthalene	ug/L	ND	1.0	01/15/16 19:44	
Acenaphthene	ug/L	ND	1.0	01/15/16 19:44	
Acenaphthylene	ug/L	ND	1.0	01/15/16 19:44	
Anthracene	ug/L	ND	0.10	01/15/16 19:44	
Benzo(a)anthracene	ug/L	ND	0.10	01/15/16 19:44	
Benzo(a)pyrene	ug/L	ND	0.10	01/15/16 19:44	
Benzo(b)fluoranthene	ug/L	ND	0.10	01/15/16 19:44	
Benzo(g,h,i)perylene	ug/L	ND	0.10	01/15/16 19:44	
Benzo(k)fluoranthene	ug/L	ND	0.10	01/15/16 19:44	
Chrysene	ug/L	ND	0.50	01/15/16 19:44	
Dibenz(a,h)anthracene	ug/L	ND	0.10	01/15/16 19:44	
Fluoranthene	ug/L	ND	1.0	01/15/16 19:44	
Fluorene	ug/L	ND	1.0	01/15/16 19:44	
Indeno(1,2,3-cd)pyrene	ug/L	ND	0.10	01/15/16 19:44	
Naphthalene	ug/L	ND	1.0	01/15/16 19:44	
Phenanthrene	ug/L	ND	1.0	01/15/16 19:44	
Pyrene	ug/L	ND	1.0	01/15/16 19:44	
2-Fluorobiphenyl (S)	%.	71	21-114	01/15/16 19:44	
p-Terphenyl-d14 (S)	%.	111	25-131	01/15/16 19:44	

LABORATORY CONTROL SAMPLE: 1461005

	1101000					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1-Methylnaphthalene	ug/L		6.0	60	29-112	
2-Methylnaphthalene	ug/L	10	5.8	58	29-110	
Acenaphthene	ug/L	10	7.1	71	39-117	
Acenaphthylene	ug/L	10	7.5	75	40-120	
Anthracene	ug/L	10	8.4	84	48-126	
Benzo(a)anthracene	ug/L	10	9.5	95	51-134	
Benzo(a)pyrene	ug/L	10	7.6	76	48-141	
Benzo(b)fluoranthene	ug/L	10	7.0	70	49-139	
Benzo(g,h,i)perylene	ug/L	10	6.5	65	44-134	
Benzo(k)fluoranthene	ug/L	10	8.7	87	48-140	
Chrysene	ug/L	10	9.5	95	53-136	
Dibenz(a,h)anthracene	ug/L	10	6.6	66	44-132	
Fluoranthene	ug/L	10	9.1	91	50-135	
Fluorene	ug/L	10	8.3	83	44-124	
Indeno(1,2,3-cd)pyrene	ug/L	10	6.8	68	45-132	
Naphthalene	ua/L	10	6.0	60	30-112	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

QUALITY CONTROL DATA

Project: Proposed Sonic 16IN0007 Pace Project No.: 50136269

LABORATORY CONTROL SAMPLE:	1461005					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Phenanthrene	ug/L	10	8.7	87	47-128	
Pyrene	ug/L	10	10.2	102	50-134	
2-Fluorobiphenyl (S)	%.			70	21-114	
p-Terphenyl-d14 (S)	%.			108	25-131	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

EPA 8270 by SIM

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

QUALITY CONTROL DATA

Analysis Method:

Matrix: Solid

Project: Proposed Sonic 16IN0007

Pace Project No.: 50136269

QC Batch:	OEXT/42066	
QC Batch Method:	EPA 3546	

Analysi

Analysis Description: 8270 MSSV PAH by SIM

Associated Lab Samples: 50136269001, 50136269002

Associated Lab Samples: 50136269001, 50136269002

Parameter	l Inits	Blank Result	Reporting	Analyzed	Qualifiers
1-Methylnaphthalene	ng/kg	ND	0.0050	01/12/16 18:12	N2
2-Methylnaphthalene	ng/kg	ND	0.0050	01/12/16 18:12	
Acenaphthene	ng/kg	ND	0.0050	01/12/16 18:12	
Acenaphthylene	ng/kg	ND	0.0050	01/12/16 18:12	
Anthracene	ng/kg	ND	0.0050	01/12/16 18:12	
Benzo(a)anthracene	ng/kg	ND	0.0050	01/12/16 18:12	
Benzo(a)pyrene	ng/kg	ND	0.0050	01/12/16 18:12	
Benzo(b)fluoranthene	ng/kg	ND	0.0050	01/12/16 18:12	
Benzo(g,h,i)perylene	ng/kg	ND	0.0050	01/12/16 18:12	
Benzo(k)fluoranthene	ng/kg	ND	0.0050	01/12/16 18:12	
Chrysene	ng/kg	ND	0.0050	01/12/16 18:12	
Dibenz(a,h)anthracene	ng/kg	ND	0.0050	01/12/16 18:12	
Fluoranthene	ng/kg	ND	0.0050	01/12/16 18:12	
Fluorene	ng/kg	ND	0.0050	01/12/16 18:12	
Indeno(1,2,3-cd)pyrene	ng/kg	ND	0.0050	01/12/16 18:12	
Naphthalene	ng/kg	ND	0.0050	01/12/16 18:12	
Phenanthrene	ng/kg	ND	0.0050	01/12/16 18:12	
Pyrene	ng/kg	ND	0.0050	01/12/16 18:12	
2-Fluorobiphenyl (S)	%.	96	38-110	01/12/16 18:12	
p-Terphenyl-d14 (S)	%.	101	32-111	01/12/16 18:12	

LABORATORY CONTROL SAMPLE: 1459550

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1-Methylnaphthalene	mg/kg	.33	0.31	93	40-102	N2
2-Methylnaphthalene	mg/kg	.33	0.32	95	39-104	
Acenaphthene	mg/kg	.33	0.34	102	43-108	
Acenaphthylene	mg/kg	.33	0.34	103	44-110	
Anthracene	mg/kg	.33	0.34	102	44-112	
Benzo(a)anthracene	mg/kg	.33	0.36	108	43-124	
Benzo(a)pyrene	mg/kg	.33	0.39	116	44-124	
Benzo(b)fluoranthene	mg/kg	.33	0.38	115	44-123	
Benzo(g,h,i)perylene	mg/kg	.33	0.37	110	44-118	
Benzo(k)fluoranthene	mg/kg	.33	0.38	113	42-122	
Chrysene	mg/kg	.33	0.36	109	44-124	
Dibenz(a,h)anthracene	mg/kg	.33	0.38	115	44-119	
Fluoranthene	mg/kg	.33	0.36	108	45-119	
Fluorene	mg/kg	.33	0.37	110	44-113	
Indeno(1,2,3-cd)pyrene	mg/kg	.33	0.38	113	44-119	
Naphthalene	mg/kg	.33	0.31	92	42-103	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

% Rec

Limits

20-116

10-131

25-117

27-123

20-123

91

90

90

92

Max

20 N2

20

Qual

RPD RPD

6

6 20

6 20

4 20

14

QUALITY CONTROL DATA

Project: Proposed Sonic 16IN0007

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

Pace Project No.: 50136269

LABORATORY CONTROL SAMPLE:	1459550					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Phenanthrene	mg/kg	.33	0.35	104	44-113	
Pyrene	mg/kg	.33	0.36	107	45-123	
2-Fluorobiphenyl (S)	%.			85	38-110	
p-Terphenyl-d14 (S)	%.			88	32-111	

1459552

MS MSD 50136213001 Spike Spike MS MSD MS MSD Parameter Units Result Conc. Conc. Result Result % Rec % Rec 1-Methylnaphthalene 0.34 mg/kg ND .39 .39 0.36 86 2-Methylnaphthalene mg/kg ND .39 .39 0.34 0.36 85 Acenaphthene mg/kg ND .39 .39 0.34 0.36 85 Acenaphthylene mg/kg ND .39 .39 0.35 0.36 89 Anthracene ma/ka ND .39 .39 0.34 0.40 87 100

1459551

	00										
Benzo(a)anthracene	mg/kg	ND	.39	.39	0.35	0.37	88	93	23-124	5	20
Benzo(a)pyrene	mg/kg	ND	.39	.39	0.38	0.39	95	100	23-120	5	20
Benzo(b)fluoranthene	mg/kg	ND	.39	.39	0.36	0.39	90	99	24-117	10	20
Benzo(g,h,i)perylene	mg/kg	ND	.39	.39	0.35	0.37	88	94	12-122	6	20
Benzo(k)fluoranthene	mg/kg	ND	.39	.39	0.39	0.39	100	100	14-123	0	20
Chrysene	mg/kg	ND	.39	.39	0.36	0.38	93	97	22-124	4	20
Dibenz(a,h)anthracene	mg/kg	ND	.39	.39	0.37	0.38	95	98	26-113	3	20
Fluoranthene	mg/kg	ND	.39	.39	0.35	0.37	88	94	21-125	7	20
Fluorene	mg/kg	ND	.39	.39	0.36	0.38	92	96	19-127	4	20
Indeno(1,2,3-cd)pyrene	mg/kg	ND	.39	.39	0.36	0.38	91	95	15-121	5	20
Naphthalene	mg/kg	ND	.39	.39	0.33	0.34	85	87	15-125	3	20
Phenanthrene	mg/kg	ND	.39	.39	0.34	0.36	87	92	10-139	6	20
Pyrene	mg/kg	ND	.39	.39	0.35	0.37	89	94	17-132	6	20
2-Fluorobiphenyl (S)	%.						77	81	38-110		
p-Terphenyl-d14 (S)	%.						74	81	32-111		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Proposed Sonic 16IN0007

Pace Project No.: 50136269

QC Batch:	PMST/11546		Analysis Meth	iod:	SM 2540G					
QC Batch Method:	SM 2540G		Analysis Desc	cription:	Dry Weight/Pe	ercent	Moisture			
Associated Lab Sam	oles: 50136269	001, 50136269002								
SAMPLE DUPLICAT	E: 1459832									
			50136063002	Dup			Max			
Param	eter	Units	Result	Result	RPD		RPD		Qualifiers	
Percent Moisture		%	8.7	g	9.1	5		5		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

QUALIFIERS

Project: Proposed Sonic 16IN0007

Pace Project No.: 50136269

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

- N2 The lab does not hold TNI accreditation for this parameter.
- R1 RPD value was outside control limits.

METHOD CROSS REFERENCE TABLE

Project: Proposed Sonic 16IN0007

Pace Project No.: 50136269

Parameter	Matrix	Analytical Method	Preparation Method	
8260 MSV 5035A VOA	Solid	SW-846 8260C	SW-846 5035A	
8270 MSSV PAH by SIM	Solid	SW-846 8270C	SW-846 3546	
8270 MSSV PAHLV	Water	SW-846 8270C	SW-846 3510C	

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:Proposed Sonic 16IN0007Pace Project No.:50136269

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
50136269003	B-1 (10-20)	EPA 3510	OEXT/42094	EPA 8270 by SIM LVE	MSSV/20015
50136269004	B-2 (6-16)	EPA 3510	OEXT/42094	EPA 8270 by SIM LVE	MSSV/20015
50136269001	B-1 (10-12)	EPA 3546	OEXT/42066	EPA 8270 by SIM	MSSV/19991
50136269002	B-2 (9-11)	EPA 3546	OEXT/42066	EPA 8270 by SIM	MSSV/19991
50136269003	B-1 (10-20)	EPA 8260	MSV/85827		
50136269004	B-2 (6-16)	EPA 8260	MSV/85827		
50136269001	B-1 (10-12)	EPA 8260	MSV/85822		
50136269002	B-2 (9-11)	EPA 8260	MSV/85822		
50136269001	B-1 (10-12)	SM 2540G	PMST/11546		
50136269002	B-2 (9-11)	SM 2540G	PMST/11546		

	5				CHAIN	OF-CUS		Analytic	al Reque	st Docur	nent		
~	Pace Analytical"		L	-		Supremo-10		7726	Noller Roa	d, Indianal	polis, IN		
	www.pacekabs.com		ä	age:		•			· .			N'WW	
Requ	lired Client Information: Section A	Required Client Information: Section B	C	ent Informatic	on (Check qu	iote/contra	:0:	То Ве Соп	oleted by Pace	Analytical Clis	ent: Secti	on C / / /	
Com	pany: Alt & Witzig Consulting Services	Report To: dherring@altwitzig.com	1 Re	quested Due D	late:			Quote Refe	ence:		•		· .
Addre	ess: 4105 West 99th Street	Copy To:	11. (NT: No	mal			Project Ma	ager:				
	Carmel, Indiana 46032	Invoice To: dherring@altwitzig.com	1	m around times less	s then 14 days su	bject		Project #:					
Phon	ne: 317-875-7000 Fax: 317-876-3705	P.O. 161N0007	labo	ratory and contract	al obligations an	1 may		Profile #:	•		:		
		Project Name: Proposed Sonic	ă tă	Rush Tumaround S	urcharge.								
		Project Number: 16IN0007	Tum	Around Time (TAT) in calender day								
	Required Client Information: Section D	Valid Matrix Cooles			Pres	ervatives		Ř	guested Anal	sis		• •	
		Mattrix Coogn VT Water WT Soil St.											
NWBER	SAMPLE ID (One characte	er per box.) Rever with AR	соггестер	SOLLECTED	t pəxləq	03	lor 8 8260			· · · · ·		nearia	5
N MƏTI		ISTAM) JTAQ	# Cont	HNO3 HSSO4 Nubues	N®SSS N®OH HCI	PAHs VOCs Mether				RE	MARKS / Lab ID	
	1010111-8	S 	VIIIIL II	045 5	3		1 K X					100	
~	B-2/9-11)/	2	1/10/16 N	30 5	2		XX I					00	6
8													
V.	B-11 (1 6 - 20)		111/16	(00 S	n	N	× ×					2002	N
۹ ۹	18-2(16-11()Y		1/11/16 UL	50 4	2	S	XX					Dot	11
ං			- h h										
7													
© 													
, P											· · ·		
10			- 									-	
1-1-													
12													
	SHIRMENT METHOD AIRBILLINO.	SHUPPING, DATE, NO, OF COOLERS	11EM #	RE	LINGUISHE		ILLATION	ίΩ	ite time	ACCEPTED E	X / AFFILIA	nõn-date tin	
				311			Ath		ilmorrs'	Main	10/10/	2 K/11/1 Var	$ \mathcal{I} $
SA	MPLE CONDITION: SAMPLE NOT	ËS:						-	-		5		
Tem	ip in C	!											
Rect	eived on Ice Y N												
Seat	led Cooler Y/N		SAMPLER NAM PRINT Name o	f SAMPLER:		1	J. Ko C.			·			
444	litional Comments:	<u></u>	SIGNATURE of	SAMPLER	2			4			DA	TE Signed: 1/1/	3
		-				5							Ş

Page 32 of 34

And And And And And And And And And And 	ple.Cc	malli	ilom:U	lpo	nRece	dipte					
	-AL	4	1.5	-17	710		Drniart	发 [ลงไ	3/0 2/0	,9
<i>Pade Analytical</i> Client Name:	11	14	<u>^W</u>		Δġ		FIUJOUL	m	001		4
		mmera	cial	Ľ٩	ice Öthe	ər _			and the second second		
Tracking #:	1						/	,	Date/TI	ime 50354 ki	
Custody Seal on Cooler/Box Present: 🗌 yes	/ no)	Seals	intac	t: 🗆 :	yes	no		placed	in freezer	~
Packing Material: Bubble Wrap	lags	Nor	ne [_]Ot	her _					-	
Thermometer 123456ABCPEF	Туре (of Ice:	Wet	B	ue Non	9	Samples o	n ice, cooli 1	ng proce	ess has begu	n
Cooler Temperature 1.9'C/L.9'C	ice V	/isible	in San	nple	Contain	ers:		no		+	
(initial/Corrected)				Con	nments:		Date a cont	nd Initials ents:		on diaminin 1119	9
Are samples from West Virginia?		KINO		1				/ -	-	1	
Document any containers out of temp.				1.							
Chain of Custody Present:	Yes		⊡n/a	2.							
Chain of Custody Filled Out:	Ayes	□No		3.							
Chain of Custody Relinquished:	Yes	□No	□n/A	4.	<u></u>			. <u></u>			
Sampler Name & Signature on COC:	Ves		□n/a	5.						<u></u>	
Short Hold Time Analysis (<72hr):	□Yes		□n/A	6.							
Rush Turn Around Time Requested:	Yes	<u>LIN0</u>	N/A	7.							
Containers Intact:	<u> Yes</u>	⊡No	□n/A	8.			and at	-1	<u> </u>	16/05	
Sample Labels match COC:	□Yes		⊡n/A	9.	NØ -4	IM .	or and	in	Sur	ypus	
-Includes date/time/ID/Analysis		/		<u> </u>	·						<u> </u>
All containers needing acid/base pres, have been checked r	□Yes	⊡No	P N/A	10	(Circle)	HNO3	H2SO4	NaOl	4	NaOH/ZnA	'C
exceptions: VOA, collform, TCC, O&G	noliance v	with EP.	A								
recommendation (<2, >9, >12) unless otherwise noted.				┢	······································				<u> </u>		
Residual Chlorine Check (SVOC 625 Pest/PCB 608)		<u></u>	11.	Pre	sent	Abser	<u>nt</u>		<u> </u>	
Residual Chlorine Check (Total/Amenable/Free Cya	nide)			12.	Pre:	sent	Abser	<u>11</u>			
Headspace in VOA Vials (>6mm):	□Yes	No		13							
Headspace Wisconsin Sulfide	Yes		·	14	<u></u>					·	
Trip Blank Present:	□Yes	ZNo —		15							
Trip Blank Custody Seals Present	<u> </u>			• 							
Project Manager Review		<u> </u>	<u> </u>				<u></u>				
Samples Arrived within Hold Time:	Yes			15.							.
Sufficient Volume:	Lives			10.		i		<u></u>		<u> </u>	
Correct Containers Used:				<u>, 117</u>		<u></u>	Field Dat	a Required		Y / N	
Person Contacted:	ι		_Date	/Tim	э:						
Comments/ Resolution:										<u> </u>	. <u></u>
	<u> </u>										
								<u> </u>			
							······································				
					<u></u>	0	<u> </u>		/		
Project Manager Review: Roo.	1 1	1	10	1	Sid	V)ate:	1/1	1/16	
		,		÷	/	(<u> </u>			l	1	

Form F-IN-Q-290-rev.09, 13Oct2015

.

,

.

.

4

Sample Container Count

~

CLIENT: XH & WHZID

COC PAGE ____ of ____ COC ID# _____

Project # 50 30200

Sample Line Item	DG9H	AG1U \	NGFU	AGOU	R 4/	6 BP	2N BI	P2U E	3P2S	BP3N	BP3U	BP3S	AG3S	AG1H	BP3C	C BP11	J SP5	r agzl	_		-	Ho L	7 9< H	0H>10
-			2		4							 										4		4
2			_		4																			Τ
e					ł		-						 											
4	e)			2		ļ	-								 									
5	<i>w</i>			2			<u> </u>																	
9											•		 											
7																								
8												 				 								
6																			-			-		
10												 		 										
11																								
12								ļ	-															
	Containe	ar Code	۰ÿ																, ,]
		č		.		Ľ		.																

Container Codes						
40mL HCL amber voa vial	AGOU	100mL unpreserved amber glass	BP1N	1 liter HNO3 plastic	DG9P	40mL TSP amber vial
1liter unpreserved amber glass	AG1H	1 liter HCL amber glass	BP1S	1 liter H2SO4 plastic	DG9S	40mL H2SO4 amber vial
4oz clear soil jar	AG1S	1 litter H2SO4 amber glass	BP1U	1 liter unpreserved plastic	DG9T	40mL Na Thio amber vial
terra core kit	AG1T	1 liter Na Thiosulfate amber glass	BP1Z	1 litter NaOH, Zn, Ac	DG9U	40mL unpreserved amber vial
500mL HNO3 plastic	AG2N	500mL HNO3 amber glass	BP2A	500mL NaOH, Asc Acid plastic	SP5T	120mL Coliform Na Thiosulfate
500mL unpreserved plastic	AG2S	500mL H2SO4 amber glass	BP20	500mL NaOH plastic	JGFU	4oz unpreserved amber wide
500mL H2SO4 plastic	AG2U	500mL unpreserved amber glass	BP2Z	500mL NaOH, Zn Ac	D	Summa Can
250mL HNO3 plastic	AG3U	250mL unpreserved amber glass	AF /	Air Filter	VG9H	40mL HCL clear vial
250mL unpreserved plastic	BG1H	1 liter HCL clear glass	BP3C	250mL NaOH plastic	VG9T	40mL Na Thio clear viat
250mL H2SO4 plastic	BG1S	1 litter H2SO4 clear glass	BP3Z	250mL NaOH, Zn Ac plastic	VG9U	40mL unbreserved clear vial
250mL H2SO4 glass amber	BG1T	1 litter Na Thiosulfate clear glass	U	Air Cassettes	VSG VSG	Headspace senta vial & HCl
1 liter H2SO4 amber glass	BG1U	1 liter unpreserved glass	DG9B	40mL Na Bisulfate amber vial	WGFX	4oz wide iar w/hexane wine
1 liter unpreserved plastic	BP1A	1 liter NaOH, Asc Acid plastic	DG9M	40mL MeOH clear vial	ZPLC	Ziploc Bag
	Container Codes 40mL HCL amber voa vial 1liter unpreserved amber glass 4oz clear soil jar terra core kit 500mL HNO3 plastic 500mL HNO3 plastic 250mL H2SO4 plastic 250mL H2SO4 glass amber 1 liter H2SO4 amber glass 1 liter Unpreserved plastic	Container Codes40mL HCL amber voa vialAG0U1liter unpreserved amber glassAG1H4oz clear soil jarAG14oz clear soil jarAG1500mL HNO3 plasticAG2N500mL unpreserved plasticAG2N500mL unpreserved plasticAG2N500mL unpreserved plasticAG3U250mL Unpreserved plasticBG1H250mL H2SO4 plasticBG1H250mL H2SO4 glass amberBG111 liter H2SO4 amber glassBG1U1 liter unpreserved plasticBG1U	Container Codes40mL HCL amber voa vialAG0U100mL unpreserved amber glass40mL HCL amber voa vialAG0U100mL unpreserved amber glass40z clear soil jarAG1T1 liter H2SO4 amber glass40z clear soil jarAG1T1 liter Na Thiosulfate amber glass40z clear soil jarAG1T1 liter Na Thiosulfate amber glass500mL HNO3 plasticAG2N500mL HNO3 amber glass500mL Unpreserved plasticAG2N500mL unpreserved amber glass500mL HNO3 plasticAG2U500mL unpreserved amber glass500mL HNO3 plasticAG3U500mL unpreserved amber glass250mL H2SO4 plasticBG1H1 liter HCL clear glass250mL H2SO4 glass amberBG111 liter Na Thiosulfate clear glass250mL H2SO4 glass amberBG111 liter Na Thiosulfate clear glass1 liter H2SO4 amber glass1 liter Na Thiosulfate clear glass250mL H2SO4 glass amberBG111 liter NaOH, Asc Acid plastic1 liter H2SO4 amber glass1 liter NaOH, Asc Acid plastic	Container Codes40mL HCL amber voa vialAG0U100mL unpreserved amber glassBP1N40mL HCL amber voa vialAG0U100mL unpreserved amber glassBP1S40z clear soil jarAG1S1 liter H2SO4 amber glassBP1U40z clear soil jarAG1T1 liter Na Thiosulfate amber glassBP1U40z clear soil jarAG1T1 liter Na Thiosulfate amber glassBP1Z500mL HNO3 plasticAG2N500mL HNO3 amber glassBP2Z500mL Unpreserved plasticAG2N500mL unpreserved amber glassBP2Z500mL Unpreserved plasticAG3U500mL unpreserved amber glassBP2Z250mL Unpreserved plasticBG1H1 liter HCL clear glassBP3Z250mL LP2SO4 plasticBG1H1 liter M2CO4 clear glassBP3Z250mL H2SO4 glassBG111 liter NaCO4 clear glassBP3Z250mL H2SO4 glassBC111 liter NaCO4 clear glassBP3Z250mL H2SO4 glassBC111 liter NaCO4 clear glassBC3Z260mL H2SO4 g	Container Codes40mL HCL amber voa vialAG0U100mL unpreserved amber glassBP1NI titer HNO3 plastic40mL HCL amber voa vialAG0U100mL unpreserved amber glassBP1NI titer H2SO4 plastic40x clear soil jarAG1T1 titer H2SO4 amber glassBP1N1 titer H2SO4 plastic40x clear soil jarAG1T1 titer H2SO4 amber glassBP1N1 titer NaOH, Zn, Ac40x clear soil jarAG2N500mL HNO3 amber glassBP1N1 titer NaOH, Asc Acid plastic500mL HNO3 plasticAG2N500mL H2SO4 amber glassBP2A500mL NaOH, Asc Acid plastic500mL Unpreserved plasticAG2U500mL Unpreserved amber glassBP2A500mL NaOH, Asc Acid plastic500mL H2SO4 plasticAG3U500mL unpreserved amber glassBP2A500mL NaOH, Asc Acid plastic250mL H2SO4 plasticBG1H1 titer HCL clear glassBP3Z500mL NaOH, Zn Ac250mL H2SO4 plasticBG1H1 titer H2SO4 clear glassBP3Z250mL NaOH, Zn Ac250mL H2SO4 plasticBG111 titer H2SO4 clear glassBP3Z250mL NaOH, Zn Ac250mL H2SO4 glass amberBG111 titer NaOH, Asc Acid plasticCAir Fitter250mL H2SO4 glassBG111 titer NaOH, Asc Acid plasticCAir Fitter250mL H2SO4 glass amberBG111 titer NaOH, Asc Acid plasticCAir Cassettes250mL H2SO4 glassBC111 titer NaOH, Asc Acid plasticCAir Cassettes250mL H2SO4 glassBC111 titer NaOH, Asc Acid plastic </td <td>Container Codes 40mL HCL amber voa vial AG0U 10mL unpreserved amber glass BP1N 1 liter HNO3 plastic DG9P 11ifer unpreserved amber glass AG1H 1 liter HCL amber glass BP1N 1 liter H2SO4 plastic DG9P 10mL HCL amber glass AG1 1 liter HCL amber glass BP1N 1 liter H2SO4 plastic DG9P 4oz clear soil jar AG1 1 liter H2SO4 amber glass BP1N 1 liter H2SO4 plastic DG9P 500mL HNO3 plastic AG2N 500mL H2SO4 amber glass BP2A 500mL NaOH, Asc Acid plastic JGFU 500mL HNO3 plastic AG2N 500mL unpreserved plastic AG2N 500mL unpreserved plastic JGFU 500mL H2SO4 plastic AG2N 500mL unpreserved plastic AG2N 500mL unpreserved plastic JGFU 500mL H2SO4 plastic AG3U 250mL unpreserved plastic AG3U 250mL unpreserved plastic JGFU 250mL H2SO4 plastic BC3N 250mL unpreserved plastic BP3Z 250mL NaOH, Zn Ac Diastic VG9H 250mL H2SO4 plastic BC1 1 liter H2CL clear glass</td>	Container Codes 40mL HCL amber voa vial AG0U 10mL unpreserved amber glass BP1N 1 liter HNO3 plastic DG9P 11ifer unpreserved amber glass AG1H 1 liter HCL amber glass BP1N 1 liter H2SO4 plastic DG9P 10mL HCL amber glass AG1 1 liter HCL amber glass BP1N 1 liter H2SO4 plastic DG9P 4oz clear soil jar AG1 1 liter H2SO4 amber glass BP1N 1 liter H2SO4 plastic DG9P 500mL HNO3 plastic AG2N 500mL H2SO4 amber glass BP2A 500mL NaOH, Asc Acid plastic JGFU 500mL HNO3 plastic AG2N 500mL unpreserved plastic AG2N 500mL unpreserved plastic JGFU 500mL H2SO4 plastic AG2N 500mL unpreserved plastic AG2N 500mL unpreserved plastic JGFU 500mL H2SO4 plastic AG3U 250mL unpreserved plastic AG3U 250mL unpreserved plastic JGFU 250mL H2SO4 plastic BC3N 250mL unpreserved plastic BP3Z 250mL NaOH, Zn Ac Diastic VG9H 250mL H2SO4 plastic BC1 1 liter H2CL clear glass